
An Approach to Watermarking Using Polymorphic
Algorithms For Increased Data Security

Mandeep Singh∗, Albert Carlson†.

∗Department of Computer Science & Engineering, Santa Clara University, USA
†Chair for Entropy and Encryption, Quantum Security Alliance &

Computer Science Department, Austin Community College, Austin, TX, USA
Email: ∗msingh5@scu.edu, †albert.carlson@austincc.edu

Abstract—Watermarking is a method of identifying
and controlling ownership of distributed media. It is
also extended to documents with suggestions about how
steganography can be applied to documents that are re-
produced via xeroxing and electronic means. In this paper,
we show how polymorphic random number generators
can continuously morph watermark locations so that they
are untraceable to the human eye or ear and cannot be
replaced without being detected. As part of the paper,
we introduce a new method for randomization based on
wave action and common waveforms found in electrical
engineering, applying that technique to the placement of
watermarking data. These techniques are then applied to
securing data and the ownership of documents.

Keywords: Data Security, watermarking, steganogra-
phy, polymorphic algorithms, wave randomization, poly-
morphic random number generators

I. INTRODUCTION

Watermarking is a form of steganography that
provides both a method of positively identifying
the origin, control, and ownership of a document
as well as a way to insert and transport data. The
method involves techniques to insert unique codings
or patterns within the original file. This can be
done by adding words to a document, images to
a graphic, or even manipulation at the bit level.
Such techniques can also be used in large, streaming
files used for video and data delivery to prevent the
piracy of intellectual property.

Watermarking, including steganography, is both
related and complementary to encryption. It is used
as a method of non-repudiation and identification
of the owner of the data or intellectual property.
A defining characteristic of watermarking is that
the technique is invisible to normal users. How-

ever, static watermarks can be easily detected and
replicated by a malicious entity. This paper explores
different methods using polymorphic algorithms
similar to how they are used in encryption [1] to im-
plement deterministic yet unpredictable watermarks
into files for increased data security.

The paper is organized into five sections. The first
is the introduction to the paper, followed by a neces-
sary background of random number generators. Sec-
tion 3 discusses the wave method of randomization,
with the requisite mathematics. Next, Section Four
covers watermarking with polymorphic principles.
Section Five gives the conclusions for the paper and
also introduces some future directions of research.

II. BACKGROUND

A. Randomization

Random number generators (RNGs) are functions
that provide a number stream that is seen as random
for a “short” sequence. In this case, short is a
number (m << ∞). Each RNG has a characteristic
sequence of size |λ| and to be secure it is desired
that the cycle length be greater than the number
of accesses made to it by the algorithm/program.
RNGs have the property that each number in the
sequence (xi) from an arbitrary starting point in
the sequence (known as the “seed”) is unique.
Uniqueness comes from the RNG function which
is

xi+1 = f(xi) (1)

where f(xi) is the RNG function. Since the function
cycles, ∀n > 0

xi = xi+nλ (2)

[Mandeep Singh, Albert Carlson. (May 31, 2024). An Approach to Watermarking Using Polymorphic
Algorithms For Increased Data Security. Austin Community College/IEEE.]

A “maximal cycle” occurs when there are at most
two cycles and one cycle has at least 2b − 1 values,
where there are b bits in the size of the random
number.

Every RNG is a function and the information
that is found in examining each new number in the
sequence allows an observer to gain information
about the RNG. This is similar to the concept of
entropy [2] in information theory (IT) [3]. Similarly,
the “unicity distance” for RNGs is given as the
number ρ, describing the number of entries required
to be able to determine the particular RNG and
its location in the output cycle. At that point, an
observer can accurately predict the next number in
the sequence.

Random numbers are required for several algo-
rithms in IT in addition to obscuring. Those applica-
tions include both compression and modes. Modes
are highly dependent on RNGs and are widely used
to add security to encryption.

III. WAVE RANDOMIZATION

As in most encryption or reordering functions,
randomization functions are key to success. IT indi-
cates that redundancy should be avoided if possible.
Creating a function (f(x)) that avoids predictability
requires one that is both asymmetrical in its pe-
riod (λ) and sufficiently long to exceed the unicity
distance (n) in the message [4], [2], or portion of
the message, encrypted. Most common keys are
selected and then used for the entire length of
the message, if not for many messages. Modern
cryptography teaches that the bigger the key the
larger the key space and, consequently, the more
secure the message. There are, however, flaws to
this general line of analysis. First, not all keys result
in unique encryptions. This may be due to limited
characters used in the message [5]. The entropy
of a message determines how much information
is needed to break that message. Most decryption
techniques cannot break an encryption at the the-
oretical minimum for an encryption. Normally it
requires from 200 - 500 times that number (n) in
order to have a reasonable chance at recovering the
message [6]. One way to vary things is known as the
One Time Pad (OTP) [2], [7]. OTPs were originally
called “Vernam ciphers” [8] and were introduced
in 1917. In this type of encryption, every character

in the message is given its own key and/or cipher.
The technique of varying the key is instructive,
but it requires governments and large corporations
to be able to afford the process and its overhead.
If the key is changed on an irregular basis, then
more characters are sent using the same key. If the
key is changed on a calculable schedule, it is then
possible to attack the encryption via the function
that selects the keys [9]. Therefore, a randomizing
function whose values change over the duration of
the message is needed.

Cipher and random function designers strive for
true randomness, but even proving randomness is
difficult [10]. Some functions are known, and have
been proven to be, random. Calculating those func-
tions is not possible, so a function with a long
periodicity, compared to the message, is required.
One such way of doing this is to create a function
that describes something similar to the waves in
the ocean. In that case, the frequency of waves
(w(t)) is due to a number of factors: regular natural
phenomena (such as tides [ωn]), irregular natu-
ral phenomena (such as wind, [ωd]), extraordinary
events (such as man-made events like boats sailing),
and reflections off of obstructions (both man-made
and natural) that dies off over distance and time
according to the function fd(t, l). That is

ω(t) =
n∑

i=1

ωn(t) +
m∑
j=1

ωd(t) +

p∑
q=1

ωm(t)

+ fd(t, l)
x∑

v=1

ωr(t)

(3)

assuming that all perturbations are accounted for
from the beginning of time. After a sufficient
amount of time waves can be dropped from con-
sideration, depending on the the rate at which they
are dampened.

The main problem with using such an algorithm
is that sine waves are well understood. Other similar
periodic waves can be added to help change the
regularity of the system and cause what appear to
be discontinuities at various points in the wave flow.
Adding different wave functions also allows for
adding or subtracting offsets in the period. However,
it is important to ensure that the periods of the
different waves are NOT integer multiples of each

other. That is, for two waveforms ωi and ωj with
the associated wavelengths λi and λj,

∃!(n ∈ I), (i ̸= j) nλi ̸= λj (4)

where λi < λj .
Other candidates for inclusion in the random-

ization function are the unit step function, ramp
function, and triangle wave. Of the three, the ramp
and triangle wave functions are similar, so only
one should be included. The ramp function is most
like the unit step function, in that it monotonically
changes whereas the triangle wave is more like the
sign wave in that it changes in both the positive
and negative directions. Choosing the ramp function
is easier to deal with mathematically, so it was
chosen for inclusion. The unit step function u(ti)
is described by the equation

u(ti) =

{
0 if t < ti
1 if t ≥ ti

(5)

If added to a waveform there is a sudden jump
to the total value of the function of f(s) u(ti) at
time ti, where f(s) represents some scaling function
associated with the unit step function. That is to say,
the change in the function is not restricted to unity.
Nor is it required that f(s) > 0. The effect may
be a subtraction from the summed wave, as well
as an addition. Similarly, an instantiation of a ramp
function can also cause a gradual rise in the same
way. The ramp function r(wi, ti) is described by the
equation

r(ωi, ti) =

0 if t < ti
t−ti
ωi−ti

if ti < t ≤ ti + ωi

0 if t ≥ ti + ωi

(6)

Randomizing using these component functions
requires choosing a value between ±m for cyclic
functions that can be mapped as limits for a pseudo-
random number generator (PRNG) used in standard
software languages. Three approaches are possible.
The first is to consider each application of a new
wave pattern and normalize the effect to the range
of the number of functions applied between time 0
and ti. That is, let

f(s) =
m

|ωi|
(7)

or give each wave the weighting of the number of
waves that are active at the point in time (|wi|)
described by s.

The second approach is to replace |wi| by the
total number of waveforms over time, |wt| so that
the discontinuity is normalized over all time. This
changes the formula to

f(s) =
m

|ωt|
(8)

Finally, the third approach is to decide on some
weighting function K(x) that allows for normaliz-
ing each wave function separately and not necessar-
ily equally. If this approach is taken as the general
approach, then a general form of the combined
randomization function is given by

p(ti) =
Ks

a

a∑
i=1

√
−1

2misi
sinωi(t)

+
Ku

b

a∑
i=1

√
−1

2mjuj
u(tj)

+
Kr

c

c∑
1=1

√
−1

2mksk
r(ωk, tk)

(9)

which has a periodicity of

λ = 2
n∏

i=1

ωmaxmmaxrmaxsmaxumax (10)

assuming that ωmaxmmaxrmaxsmaxumax ∈ P. In this
equation, the use of the terms of the form

√
−1

2mjuj

allows a waveform to be added and subtracted over
time, creating further discontinuities that appear to
be random. It also allows for additional degrees
of freedom to be added into a calculable function
for obscuring the nature of the waveforms and
location of exact transitions. These functions are
also well known and characterized, as well as each
to calculate on the fly.

If the size of the message (|M |) is known, then
the goal is to achieve a periodicity (λ) such that

λ ≥ |M | (11)

Although it is preferable that for each type of func-
tion, denoted by f(x) that coefficient also have the
property ∀xi ∈ f(x) → xi ∈ P, it is not required.
Further, it is also desirable that if the coefficients
are not all prime numbers that the coefficients not

all be integer multiples of the maximum coefficient.
That is, ∀xiinf(x)

xmax mod xi ̸= 0 (12)

If the size of the message is not known at the
beginning of the encryption process an arbitrarily
large number can be assumed. A message larger
than the assumed number can then be treated as
if it were a series of smaller messages whose size
(|M − i|) is smaller than λ. In that case, all that
has to be done is to Diffie-Hellman a new set of
parameters and then continue the encryption with
the new parameters and reparameterize as needed. A
list of prime numbers that can be used as parameters
will speed reinitializing things up. Values chosen
from that list should be randomly selected with a
unique mapping employed. Seeds for the PRNG are
then selected by calculating the function at time s.
This does not guarantee unique values at any two
times, si, sj where i ̸= j, but it does randomize the
seed value, especially if there is fine granularity in
the function. Randomization is used as the seeding
value.

Consider the waves on a beach. The pattern of
waves seems to change randomly. Waves are shaped
by many factors such as wind, weather, seismic
events, passing boats, currents, reflected waves, etc.
that create a complex set of stimuli. These factors
cause changes to the patterns of wave arrival that ap-
pear to be random, but are actually deterministic. A
mathematical model of this effect can be expressed
as

w(t) =
n∑

i=1

wn(t) +
m∑
j=1

wd(t) +

p∑
q=1

wm(t)+

fd(t, l)
x∑

r=1

wr(t) + ...

(13)

where individual instances of each type of wave
component add together to make a composite wave
train in the water. A similar approach with the
wave components provides a model for simulating
randomness [11]. Let each term represent a different
type of wave function. Now let each wave function
represent an RNG. By having a composition of
RNGs to cycle through, it is possible to create the
desired wave randomization. The more components
used, the more random the result will look. The

cyclic nature of these component functions provides
a complex function and therefore, a more difficult
analysis for an attacker. Complexity does not always
equate with security, but most secure functions
are also complex. With this RNG function, it is
possible to better protect other algorithms, such as
watermarking.

IV. WATERMARKING

Watermarks are an identifying message embed-
ded in a frame, program, or file. Most users are
familiar with video watermarks, a picture or logo
added to a video program in one corner that identi-
fies the company (or channel) that is transmitting
the program for public consumption. However, a
watermark does not have to be visible to be effec-
tive. Invisible watermarks are more effective if the
watermark is to be used as a means of establishing
identity and progression of possession. Invisible
watermarks are typically disguised by placing them
somewhere that the data comprising the watermark
will not be noticed. In a video file, most formats
record the color or color and intensity of each
picture element, or “pixel.” If the value for each
pixel is encoded in binary and a matrix is made for
the values of each weighted binary bit, it can be
taken as a group and the values can be viewed as a
whole. That is, let a pixel be represented by three
base colors, red (R), green (G), and blue (B). Each
color has an intensity represented from 0 ≤ x ≤ 2|b|,
where |b| is the number of bits in the intensity
encoding. For current encodings, the number of bits
is almost always at least 8 bits. In the future, this
should continue to increase. This type of encoding
is known as “bit layer encoding,” or BLE [12].

Assume that current video formats use 8 bit RGB
to describe a pixel. The human eye is not able to
distinguish variations in colors for more than 6 bits
in any of the color domains. Blue color sensitivity
is even lower than that for R and G, only 5 bits.
Therefore, the 2 least significant bits (LSBs) of each
color are effectively indistinguishable. The same can
be said of the 3rd LSB of the B layer. Messages
can be placed in the bits of those layers and will be
invisible to the human eye. This provides the means
to place a watermark in a picture. Any watermark
that can be encoded and whose size is less than

|w| ≤ 7lphp (14)

where lp is the width (in pixels) and hp is the height
(in pixels) of the frame. Placing the watermark in
the frame and leaving it in the same place in the
frame, a static watermark, can be found and re-
covered by applying a simple modified intersection
function

lw =
⋂̂n

i=1
Fi (15)

where ⋂̂n

i=1
=

{
bi if bi = bj
x otherwise

(16)

On the average it will take

|F | ≈ lg|lw| (17)

to find the watermark.
Unfortunately, a watermark that stays in the same

place from frame to frame can be identified and
attacked using this approach. Once identified, a
simple filtering program can be written to randomly
select a new bit value for each of those bits. This
program is known as “scrubbing” the watermark. If
the replacement uses a probability of p(x = 1) =
0.5 to make the replacement, the probability of the
watermark retaining intact is

p(lw) =
1

2|lw| (18)

Scrubbing does not affect the video as long as the
bit replacement value replacing the data is random.
Preventing scrubbing requires that multiple copies
of the watermark be placed in the frame and that
the locations of the watermarks be randomized and
moved throughout the frame. Inserting the water-
marks in the frame is equivalent to a permutation
cipher (or any other equivalent function) using a
random key and permuting the watermarks in their
various forms into the combined RGB representa-
tion for the correct layers of each color. Let Xi be
the ith LSB for the color X . Further, let RGB’ be
the following bit layers concatenated together

RGB′ = B3||R2||G2||B2||R1||G1||B1 (19)

A permutation key (Kp) is constructed for a block
the size of |RGB′|. The first |lw| substitutions are
then made using a mapping of

lw 7→ RGB′ (20)

This mapping allows for substitutions in any order
and produces a possible number of mappings given
by

|k| =
(
|RGB′|
|lw|

)
(21)

The key changes for every frame. Therefore, the
total number of possible watermarks for |F | frames
is

|Kf | = |K|F (22)

If the watermark includes the identification of the
stream and the frame number, then the watermark
is easily recovered. This identification may be en-
crypted or plaintext. The number of watermarks can
also be varied to further compound the problem
of finding and scrubbing all watermarks from the
video. This is applicable for any RGB combination
now and in the future.

Watermarking is not limited to video files. One
possible extension to watermarking is to interpret
watermarks that do not correspond to the node of
an audio file that is paired to a high pitched tone.
In this case, a signal is added to the audio mix and
a tone that is based on the embedded watermark is
subtracted from the base frequency to create a new
frequency. Let the base program be represented by

pp =
n∑

i−1

Asin(ωit) (23)

where si ∈ (!it) represents the sound coming from
a single source i. The source may be an instrument,
voice, or any other source contributing to the final
sound. Further, let

ω = sin(ωλt) (24)

where ν is a frequency selected due to its ability to
annoy the listener. Therefore, with the watermark
added, the audio program (pa) is described by

pa = pp +B(ω − ωd) (25)

where ωd is the waveform derived from the node
pairing. The difference between the two waveforms
creates a beat frequency oscillator (BFO) whose
frequency is

ω − ωd = Bsin(ωλ − ωdt) (26)

If the frequency of the BFO (ωBFO) is in the audible
range

300Hz ≤ ωBFO ≤ 20kHz (27)

then an audible sound is added to the program.
The sound can vary or stay in the same range. In
either case, it will be detectable and may degrade the
listening experience. If a continuous tone is desired,
then the watermark can be created to return a
constant value if incorrect. That constant value (K)
can be then used to produce the tone by inserting it
into the modified BFO equation as

(ω +K)− xK = Bsin(ωλ − xK)t (28)

where x is defined as

x =

{
1 if watermark is correct
0 otherwise

(29)

Files that display characters as part of their output
can embed watermarks by varying the space be-
tween words or the height that a character is located
with respect to the horizontal spacing from line to
line. An offset of 4 indicates a bit with a value of
“1” and no difference is a value of “0”. There are
some limitations to this method. If a vertical offset is
added to the character, then this can only be read if
the character is not a blank space. No such limitation
is imposed for differences in horizontal spacing. The
intent is to add offsets can are small enough to pass
for the normal variation in printing and are virtually
undetectable to the human eye. This method has
the advantage of remaining detectable either in the
electronic version or when reproduced. Care must
be taken when justifying text to ensure that the
justification retains the offset and conforms to the
proper offset.

There exist quantized vertical spacings, |s| + δ,
2|s| + δ, where s ∈ {s, 2s, sj,1, ...sj,ns} that act
as quantized distances for quick comparison that
determine the bit value of the embedded bit at that
character location. For a character spacing (a) a
logic ‘0’ occupies the area ns−∆ ≤ a ≤ ns while
the logic ‘1’ occupies the space ns ≤ a ≤ ns+∆.
To add a bit of a buffer the offset for the bit can be
adjusted to (−1)b∆

2
, where b is the value of the bit

being encoded.
Applications of the polymorphic environment can

be illustrated via watermarking videos. A video

can be watermarked invisibly to a viewer. This
watermark is used to identify the source of a video
that has been pirated [13]. Human eyes cannot
distinguish between the color difference of a single
pixel value. Color is represented by three 8-bit
numbers - one for red, one for green, and one
for blue. Combining the three colors results in the
final blended color seen by humans. This encoding
for color data results in 16,777,216 possible colors.
Now, consider the number of pixels in a picture. For
a 2-D picture, like video, there are l ∗w pixels. The
current standard resolution is 1920 x 1080 pixels
which results in 2,073,600 pixels per frame. The
human eye can recognize patterns easily. If the same
pattern were to be used in all frames, it could be
detectable by a user. Subtle changes, however, can
be made and remain undetected. Consider changing
a set of random bits in the picture to embed a
message or identification tag. There are 74,649,600
possible locations to hide the bits of the message
with b! possible orderings. That makes 74,649,600
×b! possible orderings and locations per frame.
The standard video is approximately 30 frames per
second and most movies are about 120 minutes
long. So there are approximately 1.6∗ 1013 possible
locations for data in a movie. With these many
locations, it is relatively easy to embed multiple
copies of the message or tag. Now think of the
frame as a rectangle except this is really just a 3-D
cube with one layer for each color bit. All that is
needed is to define the data, select locations using
some function(s), and change the appropriate bits
to be the contents of the embedded message or
tag. Note that the lower three bits of all colors are
indistinguishable to the human eye and the fourth
lowest bit in the blue range is also indistinguishable.
In practice, these bits are not static because using
the same values in each byte results in a frame
that looks “blocky” and unnatural. Therefore, these
bits are typically randomized before transmission.
Slipping in a bit does not seem unnatural and would
be unremarkable to an analyst.

The next step is to add watermarks with a poly-
morphic RNG such as those mentioned for creating
keys [13] using the previously mentioned signatures.
The signatures will be used to fill in the required
settings for the waver approach. Since the wave
randomization functions change rapidly and at dif-

ferent frequencies, they help defeat the prediction
of the next key or action. Many changes can be
made in a text file that can be read. The program
usually sets very specific formatting parameters.
Small changes in the formatting can be read as
embedded bits. For example, changes in margins,
indentation, and spacing can be embedded. The
changes in the negative direction can be seen as
a ‘0’ bit and changes in the positive direction can
be seen as a ‘1’ bit. Again a polymorphic RNG
can be used and the number of possible changes
depends on the file type and length. Tracing the
flow of confidential documents can also be done via
this type of watermarking. Watermarking gives new
tools for assuring security and passing messages
between users.

V. CONCLUSIONS AND FUTURE WORK

Watermarking can benefit from polymorphic
practices. A message or encryption placed in a file
requiring security can benefit from the large number
of positions in which data can be placed, requiring a
binomial choice of possible locations in a file and a
factorial treatment of the information to recover the
correct order of that data. Patterns of placement can
be changed in pages of data or pictures using those
units (or portions of those units) in the same manner
as shards in encryption. Since the method used for
hiding data in any type of stenographic file using
polymorphic mathematics requires “randomness,” a
polymorphic RNG should be used as the strongest
option. Design for such an RNG, one based on
morphing physically unclonable functions (PUFs)
[14] and decoupled from the original RNG seed,
needs to be developed.

The treatment of the presented material has been
largely theoretical. Results from implementing the
system will be compiled and presented in a later
paper to prove the efficacy of the mathematics
and algorithm. This work will show that both a
continuous and discrete approach to the random
placement of information is possible. Empirical data
on the security of the placement of the data will then
be compiled and reported.

A better information placement algorithm re-
quires that sharding[15] and data positioning in the
file be developed from local, rather than global,
language statistics. Presently, global statistics are

almost universal. A study of the local entropy and
unicity distance resulting in a simple calculation
algorithm is required. More information is also
required to estimate the required size of a masking
file for the size of a message that it can hide.
Knowing the relationship between the two will help
to properly select a file in which to hide the data.
A survey of such a value has not shown work in
this area to date. A study of the effectiveness of
hiding plain text information in a watermarked file
is also required. The object of the study is to decide
if encryption of the message before insertion of the
data is needed. This analysis should also include
the effect of compression as a security measure for
hiding data in a file.

REFERENCES

[1] Mandeep Singh and Albert Carlson. Exploring polymorphic
algorithms and their use in cryptography. 2024 IEEE 14th An-
nual Computing and Communication Workshop and Conference
(CCWC), pages 0428–0434, 2024.

[2] Claude Shannon. Communication theory of secrecy systems.
Bell System Technical Journal, 28:656 – 715, 1949.

[3] Thomas Cover and Joy Thomas. Elements of Information
Theory. John Wiley & Sons, Inc, New York, 2nd edition, 2005.

[4] Paul Garrett. The Mathematics of Coding Theory. Pear-
son/Prentice Hall, Upper Saddle River, 2004.

[5] Albert Carlson. Set Theoretic Estimation Applied to the In-
formation Content of Ciphers and Decryption. PhD thesis,
University of Idaho, 2012.

[6] Robert E. Hiromoto, Albert H. Carlson, and Richard B. Wells.
An information based approach to cryptography. In The 6th
Computer Information Systems and Industrial Management
Applications, 2007.

[7] Uli Maurer. A universal test for random bit generators. Journal
of Cryptography, 5(2):89–105, 1992.

[8] Gilbert Vernam. Secret signal system.
[9] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall.

Cryptanalytic attacks on pseudorandom number generators. In
Fast Software Encryption, Fifth International Workshop Pro-
ceedings (March 1998), pages 168 – 188. Springer-Verlag.

[10] Donald E. Knuth. The Art of Computer Programming. Addison-
Wesley, Massachussets, 1997.

[11] Albert Carlson, Steven B. Cohen, Lawrence duBoef, and
H. Stan Johnson. Block management unifi system and method-
cation, patent number us 9,436,815.

[12] Richard Wells. Applied Coding and Information Theory.
Prentice Hall, Upper Saddle River, 1999.

[13] Albert Carlson, Steven B. Cohen, and H. Stan Johnson. Digital
watermarking for secure transmission between a source com-
ponent and a node device, patent number 8,924,730.

[14] Basal Halak. Physically Unclonable Functions, From Ba-
sic Principles to Advanced Hardware Security Applications.
Springer, Cham, Switzerland.

[15] Claude Shannon. Prediction and entropy of printed english.
Bell System Technical Journal, 30:50 – 64, 1951.

