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Abstract—With the ever increasing demand of higher

security standards for data encryption, algorithms need

to be scalable and efficient while maintaining a high

key space to prevent brute force attacks. Although the

current encryption standards are decent for the current

era of computing power, many will be rendered useless

as quantum computing becomes more relevant. Even now,

the current encryption standard of AES-256 with CBC

is vulnerable to attacks such as the key recovery attack.

This paper covers the basic foundations of polymorphic

encryptions, the mathematical principles behind them, and

a novel post-quantum polymorphic encryption algorithm.
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I. INTRODUCTION

Polymorphic encryption is the method of obscur-
ing data by breaking a message into sub-messages
that are smaller than the unicity distance using
“randomly” selected cipher/key pairs that morph
from sub-message to sub-message [1], [2]. The most
familiar polymorphic cipher is the one time pad
also known as the Vernam cipher [3]. Polymorphic
ciphers

A. Current Encryption Standards

Currently, in the security field, the Advanced
Encryption Standard (AES) [4] with modes, such
as CBC, is considered to be the gold standard for
encryption for both government agencies and private
entities. However, with the advent of quantum com-
puting technology, these cryptographic encryption
standards are threatened by the increased computing

power of quantum computers. There are also proven
side-channel attacks that degrade the reliability of
the current encryption standards [5]. These trends
most directly affect public key encryption (PKE)
[4], [6] systems such RSA, ECDSA, ECDH, and
DSA. The current symmetric key cryptosystems,
such as AES-256, are considered relatively quantum
proof because of the analysis of Grover’s algorithm
[7]. Grover’s algorithm, a random walk searching
algorithm, proves that the strength of symmetric key
algorithms reduces the key space of those ciphers
by a factor of

√
2 on a quantum computer. Keeping

the same degree of security for those symmetric
key ciphers in the post-quantum environment (PQE)
requires that the key space be increased by a factor
of 2 to compensate for the efficiency of the search
algorithm - something that is easily accomplished
with scalable cryptographic algorithms. Either the
key space is directly increased or using combina-
tions of ciphers. However, theoretical proofs do not
necessarily port to the real world seamlessly. Tests
were run by Fujitsu [8] whose analysis shows that
a quantum computer is able to break AES-256 in
under 4 seconds and the military grade AES-2048
within 104 days. With the increasing availability
and use of quantum computers, all of the current
encryption algorithms will not be as secure an
option as they were prior to the PQE, necessitat-
ing an advancement in encryption technology and
algorithms. Polymorphic encryptions are presented
in this paper as an example of that solution [1].

The paper is organized into five sections, in-
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subject and is followed by Section II on the basics
of polymorphic encryption. This particular type of
encryption is relatively new and is not generally well
understood. Section III covers implementing poly-
morphic encryption and the required components
for the technology. Section IV contains conclusions
related to the work and future work anticipated
in the field. The final section is composed of the
references used in the work.

II. PRINCIPLES OF POLYMORPHIC ENCRYPTIONS

A. What is a Polymorphic Encryption

A polymorphic encryption is an encryption whose
encryption/decryption key pair is changed fre-
quently and irregularly during use. For example,
assume that there is an output key with the value
5 and the encryption algorithm splits the input and
adds these values up in order for the output to
be equivalent to the input. The value of 5 can be
derived many different ways - 1 + 4, 2 + 3, 1 + 1
+ 3, 2 + 2 + 1, etc. There are effectively almost a
transfinite number (ℵ0) of ways to create the output
value from the inputs. Even though the inputs are
different, they arrive at the same end value, resulting
in having a changing key pair while maintaining the
same output. The exact number of such pairings is
ℵ0 ≈ ∞. Why is this so important and is different
from current encryption methods? It all comes down
to Shannon’s Laws [9] and the concept of entropy
(the “uncertainty” in information). The entropy for
any given message is:

H(x) = −
n∑

i=j

pr(xi)lg(pr(xi)) (1)

where
∑

is the sum over the possible values, pr is
the probability, and lg is the base 2 logarithm. This
gives the entropy for any part of a given message
or file which is known as “local entropy” [10], or
Hl(x). The local entropy then gives Rλ,l, the local
redundancy, for that sub-message in the message
or file. The local redundancy in the sub-message
is given by

Rλ,l = 1− H(x)

Hmax(x)
(2)

which leads to the definition of the local unicity
distance (nl(x)) - the amount of information or

data that is required to unambiguously determine
the original plain text message [9], [10] given by

nl(x) =
log(|K|)

Rλ,l(x)log(|A|)
(3)

The conclusion is that some areas of a message are
easier to break than others in the message. There-
fore, an attacker can locate and attack the vulnerable
areas of a message. If enough data is collected, the
encryption can be broken. An example of this is
the Soviet Union reusing “one time pads” (OTPs),
which led to intelligence agencies being able to
break their coded messages [11], [12]. However, if
all portions of the message do not have enough data
to break, the message cannot be broken. This is why
some messages can be broken and others cannot. In
order to prevent enough data from accumulating so
no part of the message can be broken, the message
is split into “shards” [13], [2], or submessages
contained in the message stream.

B. Shards and Isomorphism

If |shard| < nl, such that no shard achieves
unicity distance, then no portion of the message has
enough data to be broken. This means that each
shard needs its own cipher and key pair and these
pairs must not be predictable. This method makes
it completely infeasible to break a message while
being cheaper than a OTP [14]. The “key space”
is the number of possible keys that can be used
by a cipher. To “brute force” [4] the decryption of
a message, the worst case would be to try every
single key in the key space. Therefore the number
of keys that must be tried to successfully brute force
a decryption on the average is [15], [16] is:

tk ≈
|Kc|
2

(4)

However, from Shannon’s Theory, this number of
attempts has a limit, or the maximum that has to
be tried on average. For many messages, more than
one key will result in encryption or decryption [13].
Equivalent keys normally occur when not all of the
alphabet of the language appear in the message.
These keys are known as isomorphic keys [17] since
they are equivalent. For any two equivalent keys i, j
where i 6= j :

Eki(M) = Ekj(M) (5)



Creating the sets of isomorphic keys, only one key
from each isomorphic set Kiso,i must be tried in
order to eliminate all of the keys from consideration
or to accept the isomorphic key as the answer for
decryption. Therefore, the true key space is

|Ke| = |K| −
n∑

i=1

|Kiso,i| (6)

or, the number of sets of equivalent keys. The key
representing the set is known as the “systematic iso-
morph” for the set [13]. This shows that key spaces
are often smaller than the maximum and the cipher
strength must be based on the message as well as
the cipher and key. However, the problem of smaller
than expected key spaces can be compensated for by
using a polymorphic cipher. A polymorphic cipher
engine has a series of ciphers from which one is
chosen at random for each shard so, for n shards,
the key space is

|Kp| =
n∏

i=1

Kci (7)

This makes a polymorphic cipher much more se-
cure since the key space increases multiplicatively
with each component based on factorial key space.
The vast number of new keys is why correctly
implemented polymorphic encryptions are quantum
proof. As computing power gets stronger, it is easier
to check all the keys in a key space using a brute
force attack, making ciphers lose their effectiveness.
This is why the goal of cryptography researchers is
to increase the key space over time. For a poly-
morphic encryption, a new encryption or larger key
size is not needed to combat this issue because the
shards do not have the required amount of infor-
mation needed for statistical analysis. Polymorphic
ciphers just need to use smaller shards, thus further
increasing the key space without much overhead.
The smallest shard is a single character. Faster
machines make it possible to create those smaller
shards during the encryption process without in-
creasing processing time due to the ability to spread
the overhead using parallel processing, threads, or
graphics processing units (GPUs). Polymorphic ci-
phers become stronger with increased computing
capabilities and keep pace with better computers.

C. Isomorphic Reduction

All ciphers are ultimately substitution (S) ciphers
[18]. Consider a block of characters as comprising
a single metacharacter (a character composed of
characters, or a block of characters) [13] in a
metalanguage. Then, an attacker can treat any cipher
applied to this block as an S cipher. Every cipher
can be replaced by the mapping function (7→), the
definition of an S cipher. For example, a P cipher
across byte boundaries is a S cipher with constraints
[19]. After mapping a cipher into an S cipher,
multiple S ciphers can also be combined using
“idempotence.” Idempotence [20] is a property that
collapses many ciphers into an equivalent cipher.
The action of applying idempotence collapses more
than one S cipher into a single, equivalent S cipher
with a new key. The application of the property of
idempotence can be shown mathematically as

Sk1(Sk2(M)) = Ske(M) (8)

where S is a substitution cipher and k is a key.
How does this work for ciphers that reduce to the
S cipher? The reduction proves Feistels’ assertion
that all ciphers are S ciphers [21] Assume a product
cipher is made up of a P , an S, an XOR, and
another S. Since each maps to an S cipher, this can
be reduced to:

Se = S1(S2(S3(S4(M)))) (9)

Applying isomorphic cipher reduction, it can be
easily proven that a round in the AES cipher [4]
is actually only a single S cipher. Since rounds
collapse due to idempotence, the full round structure
of the entire AES encryption collapses to a large S
cipher. Note that the AES cipher is of the type PSP
(permutation, substitution, permutation). So how
does a PSP cipher compare to a large S cipher?
The standard comparison is to compare the unicity
distance (security) of the two types of ciphers [22].
The proof is as follows. Let Sec be the ratio of
security between the two ciphers, ni is the unicity
distance of the cipher i, |A| is the size of the
alphabet, b is the number of bits in the key, and
Rλ is the redundancy of the language.

Sec =
|nPSP |
|ns|

=

log(b!|A|!b!)
Rλlog|A|

log(A!)
Rλlog|A|

(10)



=
log(b!A!b!)

log(A!)
=

log(b!) + log(|A|!) + log(b!)

log(|A|!)

= 1 + 2
log(b!)

log(|A|!)

Now let ǫ = log(b!)
log(|A|!)

and ǫ < 1 ∀ |A| < 2.

For English |A| = 26. Taking a one byte cipher,
then ǫ ≈ .37. A six byte cipher would have
ǫ ≈ .00004. We see that as the block size increases,
the difference in security decreases. However, with
isomorphic reduction, ǫ = 1 and reducing to the S
cipher ǫ = 0. Therefore Sec = 1. Any single cipher
will reduce in this manner, making polymorphic
ciphers the only cipher with increasing security.
There is no increased security with the increase in
complexity of PSP (and related) cipher types. This
leads to the conclusion that the increased time and
resources of using these complicated ciphers are not
worth the effort.

III. POLYMORPHIC ENCRYPTION

CONCEPTUALLY IMPLEMENTED

A polymorphic encryption sysem is composed of
a collection of different and important components:
a large signature from each system, a Trusted Third
Party/Certificate Authority (TTP/CA) for signature
storage and transfer, a library of cryptographic ci-
phers (i.e. AES-256), a pseudorandom number gen-
erator (PRNG) (preferably polymorphic) for wave
randomization in order to generate keys, and a shard
reduction and randomization algorithm. Optional
components to increase the complexity are video
watermarking, audio watermarking, text watermark-
ing, and compression as vehicles for the data. This
paper will not cover watermarking or shard random-
ization algorithms as their complexity are out of the
scope for this paper. However, the other methods
needed for the algorithm are described here.

A. Signatures

Every computer has a unique state that consists of
hardware configurations, memory and bus configu-
rations, MAC and IP addresses, serial numbers (chip
and system), software license numbers (one for each
program), OS serial number, BIOS data, and so on.
When appended, they comprise a unique identifier
for the system, known as a “node signature.” Some
contents may be similar between systems, but taken

as a whole they become a “fingerprint” that can
identify the system. Fingerprints are just one type
of signature. Many others exist.

These identifiers also provide information that
can be used to generate unique random numbers
for the keys. Each of these values can be read
from the system and reassembled when needed.
Consider a “signature” that is formed when this data
is concatenated into one string. Imagine this string
is arranged as a rectangle. The data can either in
any sized chunk. Since reading the string in order
can potentially lead to an attacker reassembling it,
it is therefore necessary to reorder the signature into
a different string through some kind of transforma-
tion. Reordering the constituent components com-
pletely changes the signature. Such an action can
be accomplished by creating a variable to change
the assembly order of the signature or by creating
a new structure and generating the key from this
unrelated collection of data. But this is not enough,
we want to do more so an attacker cannot follow.
If we use only a part of the signature, it makes it
hard for the attacker to try various combinations of
this large signature. So we use a Random Number
Generator (RNG) to choose the number of bytes/bits
we want to keep while making sure there is enough
information to keep the signature long enough to be
useful in generating keys.

One method that will accomplish this goal is to
use a combination of data reassembled from the
signatures of both the receiving and sending nodes.
The resulting signature data is assembled into a
rectangle that starts at a random position in the
structure and skips around the rectangle according
to some sequence. That sequence is made by picking
two numbers, an offset c and a constant k. Once the
offset is selected, the key is constructed by adding
that bit, or byte, or bytes to the key. Next, consider
some function whose form is given by

f(x) = (cx+ k) mod p (11)

where k is a constant and p is the length of the sig-
nature. This allows skipping over the rectangle and
picking numbers (pseudo)randomly. Naturally, there
are many different functions and Psuedorandom
Number Generators (PRNGs) to create the move-
ment in the signature matrix. These can be selected
using seeds sent during the handshake or derived



in some other manner, such as a Diffie-Hellman
exchange [23]. The same action may be taken by
using physically unclonable functions (PUFs) and
shadow PUF structures. In this way, those numbers
decouple themselves from the signature itself.

B. Physically Unclonable Functions

Physically unclonable functions (PUFs) are a
collection of information that are dependent on the
construction or manufacturing of a unit that can
be used as an identifying signature of the unit
[24], [25]. These differences between units typically
come from random variations that arise during the
manufacturing process, such as the amount of cop-
per deposited on PC board traces, the concentration
of chemicals in an integrated circuit junction, or the
serial number of a constituent unit in a computer.
One of the more common PUF values is characteriz-
ing the power-on state of memory bits in a computer.
Some bits will always assume the value of binary
1, some of binary 0, others will mostly be binary
0 (known as “X”), and finally, the remainder will
power on to mostly binary 1 (known as “Y”) [26].
If the PUF value of interest is recorded, then the
PUF value can be used to uniquely identify the unit
as long as the unit is not physically altered.

Because the PUF signature is unique, it can be
used to generate keys and seeds for PRNGs. Further,
if combined with another PUF, the resulting PUF
(say PUF’) can be used in the same manner with
information from both parties of the exchange. This
approach is used to ensure that both encrypting
parties have to provide information unique to their
computing machines to share messages. The proce-
dure for such a sharing of information is easy to
explain. Consider two computers denoted by “S”
(the sender) and “R” (the receiver). Each party
selects half of their PUF signature and sends it to
the other party. This is normally done via digital
certificate using a TTP/CA. Only the part selected
by the party for their half of the PUF’ is transferred.
Each party then locally generates the PUF’ by
assembling the data of their half of the PUF with the
received half in an agreed upon pattern. The PUF’
is then used as either a seed or to generate keys and
is often assembled in the form of a table, known as
a PUF table.

C. Shadow PUF Tables

A major problem with a PUF table is that if an
attacker can monitor the requests for data from a
PUF table, they can potentially reconstruct the PUF’
table and, using the patterns, then figure out how
the parties are constructing keys. In order to keep
the attacker from discovering the contents of the
PUF’ table, the PUF’ table must morph as it is used.
Using the principles of Shannon Theory, specifically
entropy and unicity distance [9], and those of poly-
morphic ciphers [1], it becomes necessary to replace
the PUF’ table at frequent and irregular intervals.
These intervals are determined by the information
that accumulates with each use of the PUF table
[27]. This time is often referred to as the time to
live (TTL) [13] and is related to the local entropy
and unicity distance [10] of the PUF’ table. The new
table is known as a “shadow PUF” [28] table. Idriss,
et al showed that it is possible to create any number
of shadow PUF tables from the PUF’ table that have
the same statistical properties as the original table,
but not identical contents. By producing a series
of shadow PUF tables and using each for less time
than the TTL associated with the shadow PUF table,
there is not enough information for an attacker to
reconstruct the PUF’ table in use.

D. TTP/CA

If signatures are exchanged, the sender can en-
crypt and not have to send the entire key to each
other, thereby potentially revealing that key to snif-
fers. The key is developed from the signature at the
beginning of the message. Leaving the seed numbers
with the file does not hurt if the file is stolen since
the system is needed to develop the key. Naturally,
at no time should a user send the entire signature
if they can avoid doing so. Certainly sending the
signature from the machine it belongs to should
be avoided. Therefore, it is desirable to use a TTP
or CA that holds many signatures as the source of
the partial signature exchange. Each node must read
its own signature and report it to the TTP/CA for
distribution. The exchange of the partial signature
happens one time and only between the node and
the TTP. In addition, the TTP should also append
false data to the signature stored as a cryptonull. The
nodes agree to what parts of the signature are valid
and also agree on the order in which the signature



is sent. All that is required is a way to derive the
key on both the sender and receiver’s systems that
appears completely random but results in the same
key. In order to do so, a method known as wave
randomization is used to achieve this randomness.

E. PRNGs

Randomization is a major concern of cryptogra-
phy. Violation of this principle is the basis of the
very effective Venona attack [11], [12], [29] used by
the US during most of the 20th century. However,
it is mathematically and practically impossible to
generate random keys at two different nodes out
of direct observational contact with each other.
Consider the sources of randomness such as coin
tosses [15], cosmic events [30], lava lamps [31], and
white or pink noise [32], [33]. All these sources of
randomness fall into one of two categories - physical
events and mathematical functions. Physical events
are observed and recorded as a source of random
event sequences. However, if both users cannot see
the same event, they cannot use it. The only way to
get around this is to record the event and physically
transfer it between the two nodes. This is expensive
and time-consuming, as well as susceptible to be-
ing monitored while the data is being transferred
between users. So, while true randomness is the
goal, achieving true randomness makes reliable en-
cryption between widely separated users impossible.
Instead, What is required is deterministic sequences
that look random for the length of the message.
Nothing that can be calculated is truly random
[34]. Further, attacks are now being made on the
PRNGs as a way to recover encryptions [12], [35],
[36]. Although PRNG sequences are calculated,
sequences can be made to appear random over the
length of the sequence. True randomness as a source
generator (TRNG) is denoted by:

∀ t ∈ {0 ≤ t < ∞} → pr(t+ 1) = pr(t) (12)

where pr(x) is the probability of the event or num-
ber of x occurring. Since is important to have de-
terministic randomness, a PRNG is used to achieve
the appearance of randomness over the short-term
performance of the sequence. All PRNGs cycle,
with a period of λ accesses to the PRNG, and do
not repeat numbers during the cycle. A user can
choose to start any place in the sequence with that

point being called the “seed.” Each access picks
the next value in the RNG sequence and returns
it. Unfortunately, an attacker can often pattern the
PRNG and figure out what PRNG algorithm is
being used. From that information, an attacker can
determine where in the cycle the RNG is operating.
A constantly changing function with a great deal of
complexity and enough factors to make it difficult to
determine the next number returned from the PRNG
is required.

IV. CONCLUSION & FUTURE WORK

The computing world has entered an era in which
both classical and quantum computing are both
possible. One of the most important problems is that
of secure encryption. Asymmetric encryption algo-
rithms are based on problems known to be relatively
easily broken by quantum computers. The National
Institute of Standards and Technology (NIST) has
identified quantum-safe algorithms (QSAs) [37], but
the list has been diminished quickly by attacks
based on classical computers [38]. Safe asymmet-
rical algorithms are possible in the quantum en-
vironment, but the key size for those algorithms
would be too large to practically implement. Instead,
polymorphic ciphers are a better solution.

Future work can be done to further improve the
efficiency of polymorphic ciphers or introduce more
components to increase the security of the data.
Further research on securing the TTP/CA commu-
nication and signature-sharing handshake is also
crucial. Database security of the TTP/CA is also a
potential field of research. Another area of interest
and importance is shard randomization algorithms
- making sure those algorithms are more complex
allows the cipher to be more secure. Since polymor-
phic ciphers are naturally parallelizable, they should
be further researched for low-latency applications
such as the Internet of Things (IoT) [39], [40], [41].

Polymorphic ciphers provide strong security in
both the classical environment and PQE, given
that they can be customized using symmetrical
key algorithms and mutate as they are used. Com-
bined with polymorphic random number generators
(polyRNGs) [42], [43] and physically unclonable
functions (PUFs) [25], [28], polymorphic ciphers
provide methods to increase local entropy [9], [10]
and prevent the heuristic use of patterns to decrypt



encrypted messages. As the era of quantum comput-
ing nears, polymorphic ciphers and polyRNGs will
play a crucial role in protecting data.
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