
Novel Innovations for Improving the Quality of
Weak PRNGs

Benjamin Williams
Computer Science
University of Idaho
Idaho Falls, U.S.

will9847@vandals.uidaho.edu

Albert Carlson
CSIT

Austin Community College
Austin, U.S.

albert.carlson@austincc.edu

Robert Hiromoto
Computer Science
University of Idaho
Idaho Falls, U.S.

hiromoto@uidaho.edu

Abstract—Pseudo-random Number Generators are used in
an enormous number of computer applications, from video
games and wireless network collision avoidance protocols to
cryptographic security and Monte Carlo simulations. For most
applications, certain requirements regarding speed and sta-
tistical quality must be met. This is typically a trade-off.
Some modern generators add additional steps to fast, weak
generators, to improve statistical quality. The improvement
comes at the cost of speed but allows developers to compromise
for an acceptable balance of speed and quality. This paper
presents novel techniques that can be used to improve the
statistical quality of weak PRNGs and examines how existing
techniques can be generalized so they can be applied to any
PRNG.

Index Terms—Randomness, Random Number Generators,
Pseudorandom Number Generators, LCGs, MCGs, PCGs,
Geffe Generators, Polymorphic RNGs, Composite Generators

I. Introduction
In Pseudo Random Number Generators (PRNGs), the

critical factors are speed and statistical quality. Even in
Monte Carlo simulations, where weak Linear Congruential
Generators (LCGs) are often used for speed, quality is
starting to be viewed as more important [1]. This is often
a trade-off. For example, there is a mathematical proof
showing the Blum Blum Shub PRNG1 is cryptographically
secure, but the generator itself is far too slow to be used
in practical applications [2]. The fastest known PRNGs
include LCGs, but these have very low statistical quality
[3].

O’Neill’s Permutation Congruential Generator (PCG)
concept proves that fast PRNGs can be improved by
adding mutations to the output [3], but the improvement
is minor. This study takes the same starting point,
fast LCGs, and explores a broader range of options for
improving quality.

Another factor that becoming more important is mem-
ory usage. In the Internet of Things (IoT) devices, this
is a critical factor. The Mersenne Twister algorithm uses
over 2.4KB of memory [4], which is trivial even on mobile

1xn+1 = x2
n mod M , where M is the product of two large primes.

The output is one or more of the least significant bits of xn+1, and
the initial seed must be co-prime to M but not 1 or 0.

devices, but on microcontrollers used in IoT devices, like
the Atmel SAM D family, which have 4KB to 32KB of
Random Access Memory (RAM), this is very significant.
The generator described here stores only 16 bytes of state.

II. Related Work
There is not a lot of recent work in terms of improve-

ments to PRNGs. Researchers prefer to develop entire new
PRNGs rather than finding discrete improvements that
can be used to increase the quality of existing PRNGs or
to construct new PRNGs in a modular manner.

Melissa O’Neill’s PCG is one such PRNG. It combines
LCGs with output permutations to produce a fast PRNG
that is higher quality than LCGs on their own [3]. PCGs
still suffer from some of the same weaknesses as LCGs
[5]. While PCGs are better than LCGs on their own,
there is little research on the benefits of individual output
permutations. O’Neill does not do rigorous testing on each
individual permutation. Even where a single innovation
is added to an existing PRNG to create a new PRNG,
rigorous testing is typically not done to quantify the
impact of the innovation. Similarly, composite PRNGs
like Mersenne Twister, which combine innovations from
existing PRNGs in novel ways, do not quantify the impact
of the individual innovations on the outcome.

This paper does not aim to present a new PRNG based
on unquantified elements but rather presents a selection of
innovations that produced significant improvements when
applied to an existing low quality PRNG. The goal of this
paper is to gain an understanding of the contribution of
each innovative element. This would allow the construction
of new PRNGs in a more systematic manner, building on
excepted engineering practices.

III. Testing Methodology
The statistical quality of PRNGs is tested using the

Dieharder test suite [6]. Popular randomness testing suites
include Diehard [7], TestU01 [8], and NIST’s test suite [9].
However, these test suites are all outdated and unmain-
tained. Dieharder is a suite of tests that is still actively
maintained and contains most statistical tests that have
been demonstrated to be of acceptable quality. Dieharder

B. Williams, A. Carlson and R. Hiromoto. (Oct. 03-05, 2022). Novel Innovations for Improving the Quality of Weak
PRNGs, 2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT),
Kharagpur, India, 2022, pp. 1-6, doi: https://doi.org/10.1109/ICCCNT54827.2022.9984611]

https://doi.org/10.1109/ICCCNT54827.2022.9984611

includes many tests from the previously mentioned test
suites, as well as newer applicable test algorithms, making
it the most comprehensive test suite presently available.
The most recent release of Dieharder is dated from early
2020, and new tests are regularly added as they become
available.

Dieharder uses a chi-squared testing method [10] to
determine the probability of the given pseudo-random
stream being produced by a source of truly random values.
Probabilities that are too high or too low are predictable
and indicate poor quality. Due to the probabilistic nature
of this testing, even an ideal PRNG is expected to fail
approximately 1 test in 1,000 and report a weak result on
approximately 1 test in 100. Statistical testing in general
has some inherent weaknesses. One weakness is that the
tests themselves cannot be proven to be perfect. A failure
indicates that either the PRNG or the test itself is weak.
With one exception (the Diehard Sums test [6]), retained
for its historical significance, Dieharder avoids adding tests
with known weaknesses. The other weakness is that while
failing a test indicates a weakness in the PRNG with some
degree of confidence, passing a test only indicates that the
patterns that test is designed to look for are not present.
Passing even 100% of Dieharder’s tests does not prove
that the PRNG under test does not have patterns that
might easily be detected by some test that has not yet
been discovered or added.

Despite these weaknesses, Dieharder is the most com-
prehensive PRNG test suite available and thus is the best
option available. If other potential vulnerabilities exist in
PRNGs, they are not currently well known, otherwise,
tests would be developed to detect them. Those tests
would then be added to Dieharder.

IV. Composite Generators
Combining multiple weak generators can often help to

improve statistical quality. Multiple instances of the same
generator are unlikely to yield any benefits. Using multiple
different generators of the same class can be effective,
and using generators from different classes can be even
more effective. This practice dilutes statistical weaknesses,
by combining the strengths and weaknesses of different
generators. There are several known aggregation strategies
that can be used to make composite PRNGs.

An advantage of this strategy that none of the other
PRNGs presented here have is that it increases the
potential entropy in the system. This is largely dependent
on how the PRNGs are seeded. For example, if a seed
of sufficient length to give each generator a unique, non-
overlapping seed is used, greater entropy is available than
if a shorter seed is reused2. Increased entropy provided by
longer seeds increases both statistical quality and security
[11].

2In testing, a short seed was used, rotated a different amount for
each PRNG.

A. Geffe Generators

One example of a composite generator is the Geffe gen-
erator, which uses interleaving for PRNG aggregation [12].
A Geffe generator rotates through individual generators,
either taking a series of values, one at a time or randomly
selecting a generator each time a value is requested. In
either case, the generators produce a limited number of
values before being replaced. However, there is a slight
speed penalty in exchange for increased quality.

The mechanics of Geffe Generators periodically replac-
ing the underlying generators is another potential source
of entropy. This mechanism is known as the time to live
(TTL) process [13]. This regular injection of entropy can
significantly improve resilience, by making the generator
less vulnerable to state compromise [14].

B. Output Aggregation

Instead of rotating through generators, multiple gen-
erators can be run in parallel, and their output can be
aggregated. This practice is significantly more expensive
than Geffe generators, because each iteration requires all
generators in the pool to iterate. In exchange for this
overhead, the potential improvement in statistical quality
is significantly higher. For aggregation, the outputs can
be added, subtracted, or XORed. The outputs can also be
aligned, or they can be offset using rotation. This allows
the strengths and weaknesses of different generators to
directly counter each other.

C. Partial Output Aggregation

Rather than aggregating the full output of each gener-
ator, it is sometimes preferable to aggregate only partial
output. For example, it is well known that lower bits of an
LCG generator are of lower statistical quality than higher
bits [3]. It is therefore possible to use only the higher
bits of several LCGs to produce an aggregate output
of significantly higher statistical quality than could be
obtained from just one LCG or from several with all of
their output being aggregated. Additionally, when using
partial output aggregation, the bits that are not used in
the output serve to protect the security of the generator.

The aggregation strategy when using partial output
aggregation depends heavily on how many generators are
being used and what portion of their output is being used.
This strategy was independently tested by concatenating
the top 8 bits of four LCGs into a single 32 bit output.
When concatenation will not work, rotations and XORs
or other strategies can be used to fit the data to the
output space. To maximize statistical quality, the partial
outputs should be evenly distributed across the output
space. Figure 1 demonstrates XORing successive rotations
of 16 bit partial outputs from four generators, to produce
a single 32 bit final output. The GNU C code for this is
provided in Figure 2.

Fig. 1. 16-bit XOR with Successive Rotation

D. Bit-mixed Aggregation
Simple aggregation techniques often allow clear patterns

of the component PRNGs to come through. Quality
can be improved further by rearranging the bits during
aggregation. By using bit-wise shifts, AND masks, and
OR functions, this can be done efficiently and with low
overhead. This technique also creates the potential to
randomly select which bits are included in the output.
However, the practice can come with a penalty to both
speed and quality. Ideally, each output bit should only
influence the aggregate output exactly one time, and
an equal number of bits should be used from each
generator in order to avoid statistical imbalances that
could compromise the security of the PRNG.

The bit-mixing in Figure 3 uses the top 8 bits from
each of four generators. Mixing is done using a binary
value with four set bits and four clear bits with its inverse
as masks, to guarantee each bit is used exactly once and
that no generator contributes more bits than any other.
The output is a 32 bit value, composed of the top 8 bits
of the four generators mixed together in a way that makes
it very difficult to reconstruct any part of the generator
states without knowing both the mask values and how
they are applied to each generator. The constants used
here are 83 (a prime number with an equal number of set
and clear bits) and 172 (the bit-wise inverse of 83), but
any constant/inverse pair with four set bits and four clear
bits should work.

V. Output Permutations
Output permutations, commonly used to improve the

statistical quality of weak generators, are the basis of
O’Neill’s PCG [3]. PCGs are a class of generators that
apply output permutations to a simple LCG. While most
of the proposed output permutations consistently failed in
testing with Dieharder, the rotate and xorshift permuta-
tions proved quite valuable in improving statistical quality
[15]. Applying output permutations in series allows for
fine-tuning the balance of speed and quality of a generator.

A. Partitioned Output Permutations
In Crypt1, Williams et al applied O’Neill’s rotate

and xorshift permutations to separate subsections of the
output independently [15]. By splitting a 64 bit portion
of the state into 32, 16, or 8 bit partitions and applying a

permutation to each partition independently, movements
of bits become possible that would have been far more
difficult and expensive to achieve otherwise. Figure 4 illus-
trates the application of two heterogeneously partitioned
rotate permutations executed in series, color coded for
convenience3. In the resulting value, previously adjacent
bits are completely separated, which no amount of rotates
across the entire value could have done.

B. Heterogeneously Partitioned Output Permutations
A further innovation found in Crypt1 is heterogeneously

partitioned output permutations [15]. This splits a single
output value into partitions of different sizes, which allows
for partitions to cross data type alignment boundaries that
homogeneous partitions could not. For example, a 32 bit
value might be partitioned into 8 bits for the top, 16
bits for the middle, and 8 bits for the bottom, allowing
the middle partition to cross the center. Figure 5 shows
how exchanging one of the homogeneous partitions for
a heterogeneous permutation affects the results. Notice
the middle two sections each have three colors. The 4-
8-4 permutation allowed two bits (I and D) to cross the
center boundary. For larger data types, more complex
permutations can be used for more mixing. The best
results are achieved with at least four permutations in
series, mixing permutation types4.

VI. Permutation Backfeeding
The final element of Crypt1, which produced a major

increase in statistical quality, with almost no cost to speed,
was permutation backfeeding [15]. Normally, output per-
mutations are applied only to the output value [3]. In
Crypt1, however, the result was written back to the state
of the LCG after permutations were applied. Crypt1 shows
that permutation backfeeding can be a very powerful
method for improving the statistical quality of a PRNG.
The process only costs a single memory write, which makes
it very efficient. This procedure elevated Crypt1 from a
fairly good PRNG to a cryptographically secure PRNG.

There is one improvement that could be made to
Crypt1. The backfed state is also the output. This exposes
part of the raw state of the underlying LCG. Crypt1
could be improved by backfeeding only the first four
permutations. The final four would obfuscate the state
used in the output.

VII. Quad LCG
The quad LCG PRNG was not created as a study of

PRNGs. Instead, it was created for a different project
where a fast, simple PRNG of moderate quality was
temporarily required. LCGs are trivial to implement [3],
so they were used as the starting point for the required

3Note that on real world CPUs, 4 bit rotate permutations would
be quite expensive and are only used here due to space constraints.
It might be helpful to imagine each letter as two bits, and the
permutations as 16-16 rotated 6 bits and 8-8-8-8 rotated 4 bits.

4Crypt1 uses eight heterogeneous permutations [15].

// gen0-gen3 are of type uint32_t and preseeded.
// __rord(uint32_t, int) is the GNU C 32 bit, right rotate intrinsic for x86.

uint32_t result = (gen0 & 0xFF) ^ __rord(gen1 & 0xFF00, 8) |
__rord(gen3 & 0xFF, 24) ^ (gen0 & 0xFF00) |
__rord(gen2 & 0xFF, 16) ^ __rord(gen3 & 0xFF00, 24) |
__rord(gen1 & 0xFF, 8) ^ __rord(gen2 & 0xFF00, 16);

Fig. 2. C example of 16-bit XOR with Successive Rotation

// states[] is a uint32_t array of generator states

uint32_t rand =
(states[0] >> 24 & 0b01010011) << 16 | (states[0] >> 24 & 0b10101100) << 0 |
(states[1] >> 24 & 0b10101100) << 16 | (states[1] >> 24 & 0b01010011) << 8 |
(states[2] >> 24 & 0b01010011) << 24 | (states[2] >> 24 & 0b10101100) << 8 |
(states[3] >> 24 & 0b10101100) << 24 | (states[3] >> 24 & 0b01010011) << 0;

Fig. 3. C example of Bit-mixed Aggregation

0bABCD:EFGH:IJKL:MNOP Initial Value
0bFGHA:BCDE:NOPI:JKLM Rotate right by 3 partitioned 8-8
0bHAFG:DEBC:PINO:LMJK Rotate right by 2 partitioned 4-4-4-4
0bHAFG:DEBC:PINO:LMJK Final Value

Fig. 4. 16-bit Homogeneously Partitioned Rotates

0bABCD:EFGH:IJKL:MNOP Initial Value
0bFGHA:BCDE:NOPI:JKLM Rotate right by 3 partitioned 8-8
0bHAFG:PIBC:DENO:LMJK Rotate right by 2 partitioned 4-8-4

0bHAFG:PIBC:DENO:LMJK Final Value

Fig. 5. 16-bit Heterogeneously Partitioned Rotates

PRNG. Quality improvement was necessary, because
LCGs are known to be extremely weak. Since that the
higher order bits of LCGs are stronger, the top 8 bits of
four parallel LCGs were used to provide the necessary 32
bits. Concatenating the four 8 bit values into a single 32 bit
value was the obvious aggregation strategy. However, this
could allow an attacker to attack each LCG independently.
The solution to this problem was bit-mixing to obfuscate
the source generator of each bit. An xorshift permutation
was applied to the final output to prevent raw state from
being exposed in the output. Upon testing to discover
whether some statistical weaknesses in the output of the
main project were due to the PRNG or the project itself, it
was determined that this PRNG has far higher statistical
quality than expected. This prompted a study on this type
of PRNG.
A. Implementation

The PRNG produced uses four LCGs, each with unique
constants obtained from a list of known good constants
[15]. Each iteration separately advances each LCG one
step. Since the statistical quality of the bits produced by

an LCG is higher for more significant bits, only the 8
most significant bits of each LCG were used to produce
the output. This also has the benefit of keeping 75% of the
LCGs’ states private, making the PRNG more resistant
to statistical attacks on its output. Thus, this is known
as a 128/32 PRNG.

Aggregation is accomplished through bit-mixing. The
strategy for this practice employs shifts and masks to use
half of the bits of each PRNG in one part of the output and
half in another. This must be done carefully, using each
bit exactly and only once. During testing it was found that
a failure to follow this rule caused much lower statistical
quality, likely due to a strong correlation between reused
bits. Before this bug was corrected, the PRNG was failing
34 of the 114 tests run by the current version of Dieharder.
After correction, the PRNG did not fail any of the tests,
and it only produced weak results on one test. The code
used for the aggregation is shown in figure 35. After bit-

5The patterns used are 83 and 172. 83 was selected from a list of
8 bit prime numbers with an equal number of 0s and 1s. Any 8 bit
value with four 1s and four 0s would probably work.

mixing, an xorshift permutation with a partition scheme
8-16-8 was applied, as a final step. No backfeeding was
used in this PRNG, again, for simplicity.

B. Testing Results
The testing data cited for bit-mixing aggregation was

generated using a static seed, with a single run of
Dieharder’s battery of tests. This single test is not
sufficiently rigorous, thus additional testing was done
using random seeds obtained from /dev/urandom (a non-
blocking source of randomness generated by the Linux
kernel, derived from any source of randomness provided
by the CPU or system). Each set of tests was executed 10
times (each time with a new random seed), to produce a
statistically significant sample size. Recall that even given
a truly random input, Dieharder tests are expected to
return weak results up to 1% of the time and failures up
to 0.1% of the time. Weak and failed tests can indicate
weaknesses in the tests themselves, rather than the PRNG
under test. This test data is presented in Table I.

where
• “LCG” is just one LCG, without any special tech-

niques to improve the output. The results are pro-
vided here as a baseline, and they are consistent with
what is known about the quality of LCGs.

• “Parallel” uses four LCGs and aggregates the 8 most
significant bits of each using concatenation. The
improvement is striking, with no failed tests and a
decreased number of weak tests.

• “Bit-Mixed” uses four parallel LCGs and aggregates
using the bit-mixing strategy. This improvement here
is much less pronounced, though this may be because
there is not much room for improvement. There are
48% fewer weak results than “Parallel” though, which
is still quite significant.

• “Full” is the full generator, with four parallel LCGs,
partial output aggregation of the top 8 bits of each
generator through bit-mixing, followed by an 8-16-8
xorshift output permutation. The improvement does
not appear to be very big, but it does comes out to 5%
fewer weak tests than “Bit-Mixed”. The rate of weak
tests is only 70% higher than should be expected from
true randomness, which is quite good for a PRNG.

In addition to providing statistical testing, Dieharder
also provides speed data on the PRNG under test.
Included in Table I is the average speed of each PRNG
version across the 10 tests. It might seem incongruous
that the parallel LCGs are running 15% faster than a
single LCG, given that it is doing four times the work plus
some additional aggregation with every iteration. There
is a drop in speed after adding bit-mixed aggregation,
but adding the xorshift permutation appears to increase
speed. This speed data merely indicates that the overhead
is so low that unpredictable variations in OS scheduling
and other system processes make a bigger difference to
performance than any of the additional elements. Even the

slowest speed achieved in testing is extremely fast for a
PRNG of this quality. To accurately measure performance,
it would be necessary to either use profiling software or
compile the code into assembly and count instructions.
This is currently unnecessary, as even the slowest average
speed achieved is more than sufficient for nearly all
existing PRNG applications.

A weakness of this particular approach is the lack of
independent testing for each element. Bit-mixing was not
tested on a single LCG, nor were bit-mixing and the out-
put permutation tested independently of the parallelism.
The data indicates that each additional element provided
significant improvement upon the previous elements. The
magnitude of the benefits is not clear. It appears that
the parallel, partial output aggregation provided the
greatest benefit, but without testing the other elements
independently, this cannot be guaranteed.

The limits of Dieharder’s default testing parameters
were reached with parallel, partial output aggregation. It
is clear that the techniques used in this generator have a
very powerful ability to improve the statistical quality of
weak PRNGs, but the full magnitude is unclear. The final
testing for Crypt1 used Dieharder’s “test to destruction”
mode, and then its results were compared with results
from AES_OFB, a known high quality PRNG [15]. These
short test runs using default settings really only provide
a very rough quality metric. In short, while the above
Dieharder results indicate that this PRNG is significantly
higher quality than most other PRNGs, the test data is in-
sufficient to compare this PRNG with other higher quality
PRNGs. Additional testing is necessary, using Dieharder’s
“test to destruction” mode, to provide sufficiently high
resolution data to make such comparisons6.

VIII. Conclusion
The relative ease with which a high quality PRNG can

be created, using a low quality PRNG and a small number
of additional elements is surprising. This suggests, and the
evidence confirms, that it is not difficult to produce very
fast PRNGs that can compete in quality with popular
PRNGs that are high quality but relatively slow. There is
significant room for more research, but the set of elements
presented here provide some powerful options for building
custom PRNGs that can provide both high speed and
quality.

The number of innovations tested here is small. This
does not consider all of the past innovations currently
in use, which need testing and cataloging to build a
more comprehensive catalog of elements. Perhaps the
biggest limitation is one of testing randomness in general.
While Dieharder is an excellent statistical testing suite for
PRNGs, it suffers from the same problem as any kind of
statistical randomness testing. This means that as new

6This testing was not completed for this publication, because it
takes several months on high performance hardware to complete.

TABLE I
Dieharder Test Results

PRNG Version PASSED WEAK FAILED WEAK% FAILED% Speed
LCG 562 50 528 4.4% 46.3% 6.690e+07/s

Parallel 1101 39 0 3.4% 0% 7.725e+07/s
Bit-Mixed 1120 20 0 1.8% 0% 5.898e+07/s

Full 1121 19 0 1.7% 0% 6.366e+07/s
Aggregate results, 10 runs per PRNG version

tests are developed, any compendium of effective tech-
niques for improving pseudo-randomness will need to be
tested against those new tests to eliminate techniques that
have undiscovered flaws. This will be an ongoing effort,
unless some revolutionary new technique is discovered that
can comprehensively prove the quality of PRNGs.

The incremental contributions listed in this paper
(generator composition, partial output aggregation, bit-
mixing aggregation, output permutations, permutation
backfeeding, partitioning modes) have proven to increase
the statistical quality of simply engineered PRNGs. These
additions demonstrate that PRNGs can be made much
stronger using simple techniques with relatively low over-
head. This suggests that complex strategies with high
overhead are unnecessary in improving PRNGs.

IX. Future Work
There is significant room for more research in this

domain. More techniques for improving the statistical
quality of weak PRNGs undoubtedly exist and are merely
waiting to be discovered. There is also still room for more
testing, both of the individual elements presented and in
the generator presented. There is also some potential here
for the creation of modular PRNG systems.

There are three places where there is significant room for
improvement in testing. One is in the individual elements
presented. Some elements, especially those which were
discovered in previous research, already have some testing,
however often without the rigor provided by Dieharder.
The new elements presented here have limited testing with
Dieharder and would benefit from more rigorous testing,
independent of other elements.

The second area where there is more room for testing is
the complete PRNG presented here. Using Dieharder, it
has undergone more testing than most PRNGs, however,
it has not been tested to the standards established
with Crypt1 to ensure cryptographic statistical quality.
For this, it will be necessary to test this PRNG using
Dieharder’s “test to destruction” mode, the result of which
must then be compared to those of a known high quality
PRNG, like AES_OFB.

The final place where testing can be improved is the
development of a standard testing methodology using
Dieharder. Work on this is already underway. The method-
ology used in this research is one step in that process.

There is also significant potential here for breaking
down other elements commonly used in PRNGs, to create

a larger set of elements that can be used to dynami-
cally generate new PRNGs. Modular PRNGs like this
could have huge implications for security, especially in
the context of Polymorphic RNGs used in Polymorphic
encryption as well as Geffe generators.

References
[1] P. L’Ecuyer, “Random numbers for simulation,” Communica-

tions of the ACM, pp. 85 – 98, 1990.
[2] L. Blum, M. Blum, and M. Shub, “A simple unpredictable

pseudo-random number generator,” SIAM Journal on Comput-
ing, pp. 364–383, May 1986.

[3] M. E. O’Neill, “Pcg: A family of simple fast space-efficient statis-
tically good algorithms for random number generation,” Tech.
Rep. HMC-CS-2014-0905, Harvey Mudd College, Claremont,
CA, 9 2014.

[4] M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-
dimendsionally equidistributed uniform pseudorandom number
generator,” ACM Transactions on Modelling and Comutpute
Simulation, vol. 8, no. 1, pp. 3 – 30, 1998.

[5] S. Vigna, “The wrap-up on pcg generators.” https://pcg.di.
unimi.it/pcg.php, Accessed 20 June 2022.

[6] R. G. Brown, D. Eddelbuettel, and D. Bauer, “Robert g.
brown’s general tools page.” https://webhome.phy.duke.edu/
~rgb/General/dieharder.php, 2022.

[7] M. M. Alani, “Testing randomness in ciphertext of block-ciphers
using diehard tests,” IJCSNS International Journal of Computer
Science and Network Security, vol. 10, no. 4, 2010.

[8] P. L’Ecuyer and R. Simard, “Testu01: A c library for empirical
testing of random number generators,” ACM Transactions on
Mathematical Software, vol. 33, no. 22, pp. 1 – 40, 2007.

[9] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh,
M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and
S. Vo, “A statistical test suite for random and pseudoran-
dom number generators for cryptographic applications,” Tech.
Rep. 800-22, National Institute of Standards and Technology,
Gaithersburg, MD 20899-8930, 4 2010.

[10] R. L. Ott and M. T. Longnecker, An Introduction to Statistical
Methods and Data Analysis 7th edition. Cengage Learning,
2016.

[11] C. Shannon, “Communication theory of secrecy systems,” Bell
System Technical Journal, vol. 28, pp. 656 – 715, 1949.

[12] P. Geffe, “How to protect data with ciphers that are really hard
to break,” Electronics, pp. 46, 99–100, 1973.

[13] A. Carlson, Set Theoretic Estimation Applied to the Informa-
tion Content of Ciphers and Decryption. PhD thesis, University
of Idaho, 2012.

[14] Y. Dodis, D. Pointcheval, S. Ruhault, D. Vergniaud, and
D. Wichs, “Security analysis of pseudo-random number genera-
tors with input: /dev/random is not robust,” in Proceedings of
the 2013 ACM SIGSAC Conference on Computer & Communi-
cations Security, CCS ’13, (New York, NY, USA), p. 647â��658,
Association for Computing Machinery, 2013.

[15] B. Williams, R. Hiromoto, and A. Carlson, “A design for a
cryptographically secure pseudo random number generator,”
pp. 864–869, 09 2019.

