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Abstract—Product/Compound ciphers composed of
multi-byte permutations and substitutions are generally
considered to be more secure than their stand alone
individual component-cipher counterparts (i.e., substitution
(S) and permutation (P) ciphers). In this paper, we show
that a permutation-substitution-permutation (PSP) cipher
that uses any form of regular byte-block boundaries, along
with a regular encoding (such as ASCII), is no more secure
than a multi-byte S cipher. In addition, we also show that
under certain conditions, a PSP cipher can be reduced
to an S cipher. In addition to introducing the concept of
isomorphic cipher reduction, we show that our theoretical
findings translate into practical means by using a plaintext
attack. In doing so, we shed light on the problems of
encryption security that arise due to employing a product
cipher in conjunction with any form of regular byte-block
boundaries, and propose appropriate countermeasures.
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I. BACKGROUND

A. Unicity Distance
In his 1949 work, “Communication Theory of Secrecy

Systems” [1], Shannon introduced the concepts of unicity
distance and entropy. The duo together has become an accepted
measure of security provided by an encryption system. The
unicity distance, n, is defined by Shannon as:

n =
log|KC |
Rλlog|A|

(1)

where Rλ is the redundancy of symbols in the language λ
and KC is the keyspace for a cipher C. For any given language,
the respective Rλ (overall redundancy) and the alphabet size
(|A|) are constant; however, the cipher type and its associated
keyspace (K) are variable.

The unicity distance increases when the keyspace of a cipher
is increased. Consider the keyspace for a substitution cipher (S
cipher) [2], [3] given by:

|KS | = (|A|!) (2)

Thus, to increase the size of the alphabet we group multiple
symbols in a text together and encrypt them as a single symbol.
We refer to these new grouped symbols together as a “meta-
alphabet” comprising of “meta-symbols”. The meta-alphabet
and meta-symbols collectively define a meta-language [4]. As
the name suggests, a meta-language is representative of the
language λ. The total number of possible combinations of
symbols from an alphabet of size |A| in a block comprised
of m characters is |A|m, and the keyspace for the S cipher for
a block B of size m is: KB = (|A|m)!.

Now, let SS be the security measure used to compare two
block-substitution ciphers with block sizes of m and n (where
m > n), respectively. Then, SS can be defined in terms of
the ratio of their unicity distances (and in turn with their block
sizes), as:

SS =
nSm

nSn

=
n

m

log(Am!)

log(An!)
> 1 (3)

For m > n and n ≥ 1, SS will always increase as m
increases. Therefore, the security of an S cipher increases
(simultaneously with unicity distance) as the block size in-
creases. Another security as a function of block size is shown
in Figure 1.

Besides increasing the block size to increase the keyspace,
increasing the total number of times a message is encrypted
can also increase the keyspace; this is done using compounding
ciphers (also known as product ciphers) discussed by Shannon
in [1]. When product ciphers use a good mixing transformation,
as discussed by Wells [2] and Stinson [5], the total number of
keys for the resulting cipher is obtained by multiplying the
keyspace for each cipher involved. Thus, the keyspace for a
product cipher with p number of ciphers is given as:

|Kproductcipher| =
p∏
i=1

Ki (4)
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Fig. 1: Unicity Distance for a Substitution Cipher of n-
Byte Blocks

Fig. 2: Permutation Cipher

Since Shannon introduced the concept of increasing security
by compounding ciphers in [1], the general consensus is that
product ciphers of the form PSP [1], [2], [5] are more secure
than a cipher employing their individual standalone counter-
parts; however, this does not hold true for block ciphers, whose
encryption algorithms end at byte (character) boundaries, and
are encoded using ASCII. Blocks with an integral character
size, suffer from a significant weakness; that is, information is
confined within the block. As such, we hypothesize that, as the
block size of the PSP cipher increases above 2, the additional
security gained is rendered insignificant when compared to a
simple substitution cipher of the same block size.

In the following section, we establish the vulnerability of
product ciphers by reducing a duplex-product (PS) cipher into
an S cipher, followed by the reduction of a triplex-product
(PSP) cipher into an S cipher. By doing so, in theory, we
establish that the security gain resulting from compounding,
is rendered negligible when we increase the complexity of
encryption with block sizes of regular intervals. Then, using a
plaintext attack, we demonstrate that the previously established
theoretical findings translate into practical application. This is
then followed by a summary of our conclusions and future
work.

II. PS EQUIVALENCE TO S IN SECURITY

Since the block ciphers of PS or PSP type are composed of
a P cipher, where a key represents a mapping, and the keyspace
for the P cipher [2], [3], [6] is given as:

KP = b! (5)

Fig. 3: PS Type Cipher

where, b is the number of bits in the block.
Similarly, since the S cipher maps an alphabet A to another

group of symbols A′ (i.e., A 7→ A′), it is possible that A = A′.
As stated previously, substitution cipher(s) can be applied to
blocks of letters at a time, instead of one letter at a time;
e.g., mapping a two characters block to another two character
group. Now, Combining both P and S ciphers into one block
cipher using identical block boundaries results in a keyspace
of size b!|A|! (based on Eqns. 2, 4, and 5. Extending the
block cipher to a PSP cipher, the size of the keyspace is given
by b!|A|!b!. Although the keyspace increases exponentially
with each new cipher added to the product cipher; does this
additional overhead involved in the encryption by a PS or a
PSP cipher translate into increased security? To address this
question, we compare the security of a block substitution cipher
to a PS type cipher, and then to a PSP type cipher.

Cipher Reduction: A cipher C1 using key ki and encryp-
tion given as Eki,C1(M) is said to be reduced to cipher C2

for a message M [7], iff,

∀ki,M∃kj |Eki,C1(M) = Ekj ,C2(M). (6)

Now, consider a message encrypted by a permutation cipher,
followed by a substitution cipher. Without the loss of gener-
ality, let the plaintext consist only of lower case alphabetic
English characters with all the spaces and punctuation removed
[8]. The message uses a standard ASCII encoding and the
permutation employs a three character (byte) block. Under
the assumption that the encrypted message’s byte and block
boundaries are known, let’s explore the equivalence of a PS
cipher to an S cipher through the following theorem:

Theorem 1: Product ciphers of the form PS or SP aligned
at character byte boundaries provide a negligible amount of
security (in terms of unicity distance) over a block substitution
cipher with the same block size.

Proof: Let the number of bits in a block be represented
by bm. If the block begins at a byte boundary, then bm =
m ∗ e, where m is the number of bytes in a block and e is
the number of bits in a byte. While, the number of symbols in
the alphabet is given by |A|; for a block of m characters with
single character/byte, the number of possible combinations of
characters in the block is given by |A|m(as in [2], [3]). The
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repetition/redundancy in an arbitrary language, λ, is given by
Rλ [1].

The product cipher PS is composed of a permutation of bm
bits. For a substitution cipher of m characters with an alphabet
A, there are at most of |A|m possible symbols [2]. Therefore,
a PS cipher will have a keyspace of |KS |× |KP | = bm!|A|m!
(based on Eqns. 2, 4, and 5). This is an upper bound for the
keyspace, since some of the possible combinations might be
rendered forbidden by the language [9] (i.e. never encountered
in the language, such as ‘qwz’ in English language [10]). Since
the uncity distance is regarded as either a lower bound or a
mean measure, and from Eqn. 1, the unicity distance for a PS
cipher, nps is given as,

nps ≤
log(bm!|A|m!)

Rλlog(|A|m)
,

whereas, for an S cipher of the same block size, the unicity
distance, ns is,

ns ≤
log(|A|m!)

Rλlog(|A|m)
.

Based on Eqn. 3, let

SR =
nps
ns

be a measure of the relative security of the two ciphers.
Then,

SR =
log(|A|m!) + log(bm!)

log(|A|m!)

Therefore,

SR = 1 +
log(bm!)

log(|A|m!)
(7)

Since, we use Set Theoretic Estimation (STE) [11] [12] [13],
and set methodology for our analysis in which the second term
of Eqn. 7 is analogous to the bounded error term. Therefore,
let

ε =
log(bm!)

log(|A|m!)
. (8)

Then,

SR = 1 + ε.

Since the minimum number of bits in a representation is
determined by the application of Hartley’s Equation [14]. The
lower bound for bm can be defined as:

bm = dlog2|A|me. (9)

Substituting the lower bound of the representation into Eqn.
8, results in

ε =
log(d(log2|A|m)e!)

log(|A|m!)
< 1

Since, ∀x > 1; log2(x) < x. Therefore, ε < 1; and ε decreases
as m increases.

m log(bm!) log(Am!) ε
1 4.605 26.6056 0.173103
2 13.3206 1621.275 0.008216
3 23.7927 66978.08 0.000355
4 35.4202 2.40× 106 1.49× 10−5

5 47.91165 7.89× 107 6.07× 10−7

6 61.09391 2.49× 109 2.46× 10−8

7 74.85147 7.61× 1010 9.84× 10−10

8 89.10342 2.27× 1012 3.92× 10−11

9 103.787 6.68× 1013 1.55× 10−12

10 118.8547 1.93× 1015 6.14× 10−14

TABLE I: Security for a Block of m Bytes

Expansion algorithms (such as, DES [3]) are commonly
used in encryption to fill a block with permuted bits and
extra bits derived from the input data. The mapping of an
expansion algorithm is bm 7→ bm′ bits, where, bm′ = bm+n.
The expansion to bm′ must be unique because bm 7→ b′m is
both one-to-one and onto mapping. Therefore, the number of
characters that can be represented by bm′ is 2bm′ ; thus,

∀bm′ > 0→ bm′ < 2bm′

and,

∀bm′ > 0→ log(bm′) < log(2bm′ ).

So, the expansion of the symbol merely maps the alphabetic
character to a different symbol representation. Therefore, there
is no significant security-advantage gained by expanding the
size of the character representation [15]. 2

Corollary I: The relative security for a PSP cipher is given
by S = 1 + 2ε

Proof: Same as Theorem 1, but, with the keyspace for a PSP
cipher given by bm!|A|m!bm! instead of PS cipher’s bm!|A|m!
2

A. Supplementary Material for Theorem 1
Values of ε (see Equation 8) using ASCII encoding for small

block sizes are shown in Table-I, and Figure-5. While Figure-
4 illustrates the behavior of SR as a function of block size;
specifically for blocks of size m > 3; we can see from Figure
4 that the relative security SR between PS and S ciphers is
indeed negligible.
SR from Figure-4 represents an upper bound on the differ-

ence between a PS or SP cipher and an S cipher. For blocks of
size m ≤ 3 there is a small but, relatively notable difference
in the respective unicity distances of the PS and S ciphers
predicted using the unicity distance Eqn. 7. No difference
would exist if the PS and S ciphers were the same cipher.
In fact, the PS cipher is a type of S cipher if the S cipher
maps from a symbol of size |Block|, and both ciphers employ
the same block boundaries.

III. PSP EQUIVALENCE TO S
In conjunction with Eqn. (6):
Axiom 1: In order for cipher a C1 to be reduced to cipher

C2, the range of the encryption function for C1 must be a
subset of the range of the encryption function for C2. That is,
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Fig. 4: SR vs. Block Size (in bytes)

∀M ;Eki,C1(M) ∈ Ekj ,C2(M)

Axiom 2: Any cipher C1 shall reduce to itself, when, ki =
kj .

Axiom 3: If cipher C1 reduces to a cipher C2, then cipher
C1 can be replaced by cipher C2 by using the appropriate key
for C2.

Theorem 2: A permutation cipher P (Ek(M)) reduces to a
substitution cipher S within the encoded representation of a
symbol.

Proof: Let the symbol si from an alphabet A be represented
by a collection of n bits, where n = dlog2(|A|)e [14]. Let
B be the set of all possible values represented by various
combinations of the collection of n bits, and the values in set B
range from 0 to 2n−1; therefore, A ⊆ B. Since a permutation
cipher [3] preserves the total number of respective ‘1’ and ‘0’
bits, but rearranges them into another symbol by preserving
the total number of bits, Ek(A) ∈ B ( i.e., a permutation
results in a mapping of A 7→ B), therefore, under above
stated conditions, a permutation cipher is a special case of
the substitution cipher. Thus, since a unique substitution key
exists for every permutation mapping, A 7→ B [3], P reduces
to S within the boundaries of an encoded symbol. 2

The property set for P cipher reduction to the S cipher is
composed of mappings from plain text to cipher text where
the number of ‘1’ and ‘0’ bits are unchanged in the symbol
representations. In general, an n bit block can be extended to
an m bit block cipher, where m ≥ n and if the extra bits in
the expanded m bit representation are ignored. For instance,
let n bits of data be mapped to m bits with n < m. The
extra m − n bits may be an expansion, with some of the n
bits being mapped into more than one bit position (such as
occurs in many Fiestel round ciphers, like DES [3]). Any key
which is identical in the unique mapping of the m bits can be
considered the correct key with the remaining duplicate keys
ignored while decrypting the message. If the excess m−n keys
are randomly generated, those excess bits may also be ignored
in the reduction process. However, using randomly generated
bits to fill an expanded permutation would be an example
of inserting cryptonulls [3] to introduce further difficulty for
cryptanalysts.

Lemma: A substitution cipher does not necessarily reduce
to a permutation cipher.

Proof: Consider that P preserves the total number of re-
spective ‘1’ and ‘0’ bits, but, S may not; we present a proof
by contradiction: Assume that, S reduces to P in all cases(as
opposed to the Proof of Theorem 2). Let the S cipher contain a

Fig. 5: ε vs. Block Size (in bytes)

mapping in which a symbol from A 7→ B and |A| = |B|, but,
the total number of bits having the ‘1’ value is even in A and
odd in B. Now, as if the P ciphers can only map to encrypted
symbols having a constant number of respective bits(i.e., the
total number of 1’s and 0’s need to be the same in both A and
B, for a given instance of mapping); therefore, B /∈ Pk(A).
By contrapositive, in general S does not reduce to P.

Corollary 1: If cipher C1 reduces to cipher C2 it does not
necessarily follow that C2 reduces to C1.

Proof: Based on the preceding lemma: P reduces to S but
S does not reduce to P. 2

Definition: A compound symbol[16], X , is an ordered
n-tuple of characters (block) < x0, x1, ..., xi > regarded as
comprising a single symbol, where xi ∈ Aλ and Aλ is the
alphabet of language λ.

Corollary 2: Under the condition of symbol - byte boundary
alignment, a PSP cipher is idempotent to an S cipher with
identical block boundaries.

Proof: Let the symbol in a block cipher be a compound
symbol [2] defined as being the same size and having the same
boundaries as the cipher block. Further, let the S cipher be
applied to the same compound symbol. By Theorem 2, P and
S ciphers are equivalent within a symbol boundary. Therefore,
PSP reduces to S0S1S2. Since, S ciphers are idempotent [2]
and associative with each other, the S0S1S2 cipher reduces to
a single S cipher. 2

IV. CHOSEN PLAINTEXT ATTACK

In this section, we illustrate the equivalence of the SP and
S ciphers using a plaintext attack.

A. Experimental Setup:
Assume that the block cipher boundaries and the block size

are known, and the alignment condition is met. Without loss of
generality, the block size is set to 3 bytes. Now, the plaintext is
encrypted by SP, and then the resultant ciphertext is attacked
using S.

We treat an entire block as a single character from a meta-
language. Thus, each symbol is analyzed to generate common
language statistics based on their appearance in English. Lan-
guage statistics constitute property sets that can be exploited
using STE and set methodology ([9], [11]). One group of
property sets consisting of m-grams are introduced by Shannon
in [1]. The m-grams used in our STE approach, are drawn
from a survey of English prose styles from 1600 - 2000 AD
[9], and curated from Project Gutenburg [17]. Let each symbol
in this meta-language represent an m-gram of English; this
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No. 3-grams % Plaintext Covered
117 25.101%
449 50.025%
1242 75.008%

11315 100.000%

TABLE II: 3-gram Coverage for Attack

assumption reduces the total number of symbols in the meta-
language’s alphabet to the number of unique m-grams allowed
in English, and all encryption occurs within a single meta-
symbol.

Messages consisting of English language text are repre-
sented using ASCII encodings[18]. All non-alphabetic char-
acters are removed from the text to avoid giving clues about
words, sentence structure, or punctuation ([3] [8]). The key
is assumed to be constant from one block to the next. We
then append a small number of known plaintext characters
at the start of each message(i.e., expansion). The chosen
plaintext consists of a set of m-grams represented as g, where
m = |Block|, and whose combined probability of the m-gram
appearing in English is greater than some known probability
x,

x =

n∑
i=1

p(gi) (10)

We define the target coverage as the value of x (see Eqn. 10)
resulting from a set of m-grams. The set is applied to an input
file and the number of m-grams found in the coverage set,
gfound, divided by the number of m-grams in the input file,
gfile, is the “percentage of coverage” for the given m-gram
set and input file, and is given by,

percent of coverage =
gfound
gfile

× 100. (11)

Even though, each message differs because of the content
and the author, x should be close to the calculated percent of
coverage for the message.

Since we intend to demonstrate the equivalence of the SP
cipher to an S cipher, we are going to select m−grams with
high frequency of occurrence in the target language (here,
English) and then encrypt using an SP cipher, and then we
decrypt it using an S cipher. This equivalence was anticipated
by Lucks [19], who showed that a disproportionate amount of
a message is represented by a very small number of language
blocks(here, m−grams).

B. Tests and Results:
The chosen plaintext is selected from the 3-grams set, with

the highest frequency of occurrence in our m-gram property
set. The mapping for the substitution is recovered by selecting
the 3-grams seen most frequently in our corpus, and applying
them to the encryption process. A table is constructed by
matching the known plaintext to the output of the encryption
applied to the known plaintext. The table comprises a partial
key for S cipher that is used to decrypt the SP encrypted
message. The number of correctly decrypted blocks, and the
coverage are calculated. Table II shows the number of 3-grams
required to recover portions of the plaintext. For example, 449

% Coverage Average Standard Deviation
25% 25.34% 3.66%
50% 50.19% 4.84%
75% 74.78% 5.20%

TABLE III: Chosen Plaintext Results

3-grams are required to recover an average of 50% of the
plaintext.

Each of the test files is run using the chosen plaintext attack
with m-grams, providing a 25%, 50%, and 75% respective
coverage of a typical English language text. The files are used
in a total of 813,363 tests, and the results are summarized
in Table III. Since an S cipher preserves language statistics
([2], [3]), including symbol frequency; we expected that the
amount of correctly decrypted data using the chosen plaintext
attack would closely approximate to the coverage statistically
represented by the selected set.

Unlike the above case, the same plaintext symbol can map to
more than one ciphertext symbol, when ciphers do not preserve
a unique mapping of A 7→ A′ resulting in a different symbol
frequency.

In our tests, frequency varied from the calculated coverage
(based on Eqn. 11) by a high of 1.36% to a low of 0.012%
from the predicted coverage; this deviation from the average
was expected due to the semiotic [20] differences between the
authors of the literature used in our tests. As a control, several
files containing non-English text (such as Norwegian, Latin,
Spanish, Italian, Welsh, and Polish) were used. The number of
decrypted 3-grams for each non-English text is between 4%
and 15% of the total text, and are easy to distinguish from the
English texts. As the coverage of the English files increases,
the presence of the non-English files gives rise to a larger
standard deviation, as reported in [16]. The results indicate
that the chosen plaintext attack was successful for an S cipher.
Thus, ciphers of the form SP and PSP act like an S ciphers,
as demonstrated by an approximately 99% correct decryption
using this attack against English language texts.

V. SUMMARY, CONCLUSION, AND FUTURE WORK

The practice of strengthening ciphers using the S cipher in
tandem with P and linear ciphers is not always as strong as
presumed. We have shown that SP product ciphers aligned at
byte boundaries are negligibly more secure than an S block
cipher of the same block size. While Shannon claimed that
a good mix of ciphers increases security, we have shown
that SP ciphers can offer no increase in the unicity distance
as compared to S ciphers, thus, no notable improvement in
security.

We also introduced and illustrated the concept of cipher
reduction, allowing one type of cipher to be replaced by another
type of cipher under certain conditions. Reducing a cipher can
occur when the cipher replacing the original cipher can encrypt
all messages identically to the cipher it replaces. To substantiate
this, we have shown that the P cipher reduces to the S cipher
if the size of both symbols is identical. In conjunction to that,
while cipher C1 might reduce to C2, the vice versa is not
guaranteed. To support this, We showed that while P reduces
to S for an identical symbol size, S does not reduce to P. Using
reduction and idempotence, we further demonstrated that the
PSP cipher is equivalent to the S cipher if the block size is
identical and the alignment condition is met.
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Based on the results of reducing an SP cipher to an S
cipher, we illustrated a chosen plaintext attack on the SP
cipher. Employing an STE approach that utilizes the property
set of symbol frequency in the English language, we selected
a set of high frequency m-grams in English. The m-grams
in the set are appended to the front of the message and as
they are encrypted, the m-grams are recorded along with the
associated encryption. The percentage of message decrypted
closely matches the statistical frequency of the chosen m-
gram set. Thus, we have demonstrated the effects of plaintext
coverage in the decryption of an SP cipher. The cases of a PS
and PSP cipher can be expected to yield the same results as
the SP cipher under Corollary 2.

In conclusion, ciphers employing combinations of permuta-
tion and substitution must not employ regular sized blocks that
have byte boundaries; such ciphers make the user susceptible to
the same attacks as the S cipher. As a solution to this security
problem, one can employ any of the following strategies: block
ciphers that do not use an integral or cyclic block boundaries;
encryption that diffuses across byte boundaries; avoidance of
byte boundaries altogether; and the use of large block size for
encryption.

In our future work, we plan to address the issues of
confusion and diffusion using Cipher Block Chaining (CBC)
[3].
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