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Abstract—As introduced by Shannon in “Communica-
tion Theory of Secrecy Systems”, entropy and unicity
distance are defined at a global level, under the assumption
that the properties of symbols resemble that of independent
random variables. However, while applying entropy and
unicity to language(s), e.g., encryption and decryption, the
symbols (letters) of a language are not independent. Thus,
we introduce a new measure, HL(s), called the “local
entropy” of a string s. HL(s) includes a priori information
about the language and text at the time of application.
Since the unicity distance is dependent on the entropy
(because entropy is the basis of calculations for the unicity
distance), local entropy leads to a local unicity distance
for a string. Our local entropy measure explains why some
texts are susceptible to decryption using fewer symbols than
predicted by Shannon’s unicity while other texts require
more. We demonstrate local entropy using a substitution
cipher along with the results for an algorithm based on the
principle, and show that Shannon’s unicity is an average
measure rather than a lower bound; this motivates us to
present a discussion on the implications of local entropy
and unicity distance.

Keywords— entropy, redundancy, unicity distance, shannon
theory, hartley’s function, set theoretic estimation

I. BACKGROUND

A. Shannon Theory

1) Entropy: Claude Shannon studied communication
and information theory during the early-to-mid 20th

century; in his works, Shannon explored the elements
of cryptography. “A Mathematical Theory of Communi-
cation” [1] and “Communication Theory of Secrecy” [2]
are the most prominent amongst Shannon’s publications
in the field of communications; Shannon introduced
the key concepts of entropy, language redundancy, and
unicity distance in these publications, consequentially
leading to his founding work in the field of information
theory (IT) [3].

Entropy (uncertainty) is considered as the gold stan-
dard measurement for the efficacy of a cryptographic
system, while redundancy and unicity distance are de-
fined in terms of entropy. Before Shannon, Hartley
introduced an uncertainty measure [4] in 1928 that
Shannon adapted as his basis for information entropy.
Hartley addressed the concept by measuring the amount
of information obtained about the set of symbols in
a message, after randomly selecting a member of the
set [4] (This is referred to as Hartley’s function, or
entropy.) The Hartley function is defined as:

H(x) = logb(|A|) (1)

where x is a particular member of the considered set,
|A| is the size of a message’s alphabet set, and b is an
arbitrary base of the logarithm; if b = 2 (i.e., binary)
then the measure is in the unit of bits.

In this paper, we focus on the base-2 implementation
of Hartley’s function. Since Hartley’s function assumes
that the elements of the set are uniformly distributed, the
probability of the distribution function selecting a given
member in the set is defined as:

1

|A|
(2)

If the member selected from a set is known a priori,
then the number of items in the corresponding set, A is
said to be singular and Hartley’s function is applied to
a set with the property |A| = 1. Therefore, knowing
the identity of an element from the set reduces the
uncertainty about the set by

H(x) = logb(1) = 0 (3)

Therefore, H(x) = 0 for all known data, contributing
no uncertainty to the information about the set.
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Letter Frequency Letter Frequency Letter Frequency Letter Frequency
e 0.1247 t 0.09692 a 0.082 i 0.07681
n 0.07641 o 0.071409 s 0.070677 r 0.06681
l 0.044831 d 0.036371 h 0.0350386 c 0.03439
u 0.028778 m 0.028178 f 0.023515 p 0.020317
y 0.018918 g 0.019119 w 0.01352 v 0.0104567
b 0.010658 k 0.00393 x 0.002198 j 0.001998
q 0.000935 z 0.000599

TABLE I: English Letter Frequency

entropy for a string, s, drawn from a language as:

H(s) ≤ nlog2|A| (4)

where, n = |s|, and |A| is the size of the alphabet of
the language (i.e., the size of a set in Hartley’s function).
For a string composed of randomly selected independent
characters (here, a and b), the entropy of the string has
the property of:

H(a, b) ≤ H(a) +H(b) (5)

This inequality holds only for a string composed of
statistically independent symbols; however, as shown by
the frequency of letters in Table I, a language and its
constituent strings are neither uniformly distributed nor
statistically independent. For instance, in English, the
letter ’e’ typically occurs between 12% and 14% of the
time, instead of approximately 3.84% if the set of letters
were uniformly distributed. This led Shannon to restate
Hartley’s function in a more general form [2]:

H(s) =

n∑
i=1

Pxi log2
1

Pxi

(6)

where Pxi
is the probability of symbol xi appearing

at position i in a string s. Maximum entropy is then
achieved if all the symbols appearing in the string are
equally likely, as defined for a string purely composed
of uniformly distributed letters that are statistically in-
dependent of each other [5]. Figure 1 shows a plot of
Shannon’s entropy for a single character, depicting how
the “uncertainty” from a letter contributes to the entropy
of the string in which it is found. The contribution of a
single letter to the entropy of a string is highest when
P (xi) ≈ .37 (refer to Figure 1). As a letter’s probability
varies about P (xi) ≈ .37, its entropy is reduced, and
the symbol contributes less towards the uncertainty of
the string. Similarly, the contribution to the entropy of a
string by the constituent letter is reduced when the letter
is either eliminated from consideration (P (xi) = 0),
or the range of possible substitutions for the letter’s
probability approaches one.

2) Unicity Distance: The unicity distance [2] is the
average number of symbols needed from an encrypted
message string to provide enough information to be

Fig. 1: Entropy Values

correctly decrypted. The unicity distance is inversely
proportional to entropy, and is defined as:

n =
log2|k|

RLlog2|A|
(7)

where |k| represents the number of unique keys pos-
sible for a specific cipher. RL is the redundancy of
the encrypted text. For a successful decryption of a
ciphertext, on average n symbols are required.

3) Redundancy: Redundancy is the tendency of a lan-
guage to repeat symbols. Mathematically, redundancy [4]
is defined as:

R = 1 − H(x)

Hmax
(8)

Here Hmax is the maximum entropy of a string s, and
is the sum of the maximum entropy of each letter in the
string.

H(s) ≤ n

n−1∑
i=0

log2|A| = |s|
n−1∑
i=0

log2|A| (9)

Since maximum entropy is achieved when each mem-
ber of the set is uniformly possible and statistically
independent. If we consider English, with an alphabet of
26 letters, the Hmax should be ≈ 4.7 bits per symbol;
however, considering the letter probabilities presented in
Table-I and treating each symbol to be independent, the
entropy for English is H(x) ≈ 4.136 bits per symbol.

In the redundancy equation, H(x) represents the Shan-
non entropy for an unknown letter or a combination of
letters. Minimizing this H(x) will maximize the redun-
dancy of the considered language. For any language, R
varies between two limits,

0 ≤ R ≤ 1. (10)

When all of the data is known about a string, then for
each letter xi in the string, Pxi

= 1 , and H(xi) = 0.
Thus, for the string, s:
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H(s) =

n−1∑
i=0

H(xi) =

n−1∑
i=0

0 = 0 (11)

Then the redundancy for string s is:

R = 1 − 0

Hmax
= 1 (12)

As shown above, When all the data about string s
is known, R is equal to one (the maximum value).
Conversely, R is at its minimum value zero, when
H(s) is composed of completely random and uniformly
distributed letters, i.e., H(s) = Hmax. For this case,
the redundancy is given by:

R = 1 − Hmax

Hmax
= 1 − 1 = 0 (13)

In a natural language [6], however, R is unlikely to
be 0 because all languages have rules [7] that disallow
a random and uniform distribution of letters or words.

For instance, considering an unstructured language,
i.e., RL = 0 (i.e., no symbol would be repeated
due to lack of binding rules/grammar), the denominator
of the unicity distance equation would become 0. In
this case, the unicity distance becomes n = ∞
(which is not viable). Thus, languages with a structure
(rules/grammar) must have a non-zero entropy and a
non-zero redundancy.

4) M -grams and Style: Variability in expression us-
ing a language (natural or formal) is a universal char-
acteristic [6], [8]. An interesting pattern of writing
(semiotics) is shown in [9], there are different ways
to express an idea [6], [10], all of which are recog-
nizable/comprehensible by a speaker of the language.
The different ways of expressing an idea are often
informally referred to as “style(s)”, and are unique to
an individual [8]. The ability to handle the variability in
a language is crucial to a system that relies heavily on
the properties of the data it receives.
M -grams [2], [11] are employed to capture this vari-

ability in the usage of a language: M -grams are a string
of continuous letters taken from a text. Each M -gram
has a length of |m| letters and is composed solely of
alphabetic symbols. Any non-alphabetic character(s) in
the considered string are ignored. M -grams may contain
a word or span over multiple words (i.e., being composed
of two or more words). Several decryption methods have
used M -grams [2], [11], [12] as a means to exploit the
statistical features of a language (like, redundancy).

In order to capture the variability in the usage of a
language, M -grams must be drawn from a variety of
distinct texts representing various genre, subject matter,
and authors. The collection of M -grams encountered in
the collection of texts, or corpora, identifies a set of M -

|m| Forbidden Allowed Total % Forbidden
1 0 26 26 0.00%
2 15 661 676 2.2189%
3 6261 11315 17576 35.6224%
4 347292 109684 456976 75.9979%
5 11251945 629431 11881376 94.7024%
6 306789115 2126661 308915776 99.3116%

TABLE II: M -gram Summary

grams allowable in a language. The M -grams that are
not possible in a language (for example, ‘qwz’) are cat-
egorized as “forbidden.” Forbidden M -grams represent
a majority of letter combinations for |m| ≥ 3, and
they provide an enormous amount of information about a
language. M -grams can be assembled from a dictionary
by combining two, or more, words. Randomly assem-
bling word combinations will produce all of the possible
combinations in the language, but does not necessarily
reflect the actual use of the language. Prior statistical
studies of language(s) that used M -grams, relied on
spaces embedded in written language as a source of
a priori information. In practice, however, spaces are
removed from the plain text before encryption. In the
latter case, the M -gram analysis applied to a text string
may not detect boundaries between words. The training
of allowable M -grams based on a language dictionary is
therefore of limited value. We addressed this limitation
by applying M -gram analysis to an extensive corpora of
text where the usage incorporates a representative cross
section of language use, instead of using a dictionary
of a language for the analysis. In this work, 21 authors
were surveyed, (see Table-III), whose work(s) span from
the 16th to the 20th century. At least two works of
each author are included in the corpora. Genres of the
works are chosen to include various combinations of
fiction, non-fiction, poetry and novels. No foreign works
or translations are included.

Separating M -grams into the forbidden and “allowed”
sets [11], [13] (see Table II) is the first step for our set
based analysis using set theoretic estimation (STE). STE
[14] is a set based technique that requires unambiguous
set membership for proper operation. Property sets are
sets that embody information about the problem and
solution which are composed of sets, like M -grams that
are applied to inputs, and are used to focus on possible
solutions. Forbidden M -grams constitute a large amount
of information and are an efficient way to determine the
set membership.

In the following section, we define and state the local
entropy and the local unicity distance measures, followed
by the experimental conditions and results in the suc-
ceeding section, then we conclude the paper with our
discussion about the implications and our conclusions.
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II. LOCAL ENTROPY AND LOCAL UNICITY

In cryptography involving languages, a priori knowl-
edge about the probability of letters appearing, and the
frequency of symbols in a text, play a cardinal role. It
is rare for a cryptographer to have an entire message
available for analysis. Even if an entire message is
available, it is divided and analyzed as blocks (where
the size of each block varies on a case to case basis),
with one block at a time. For the analysis of an encrypted
string, the information contained in a block of that string,
along with any available a priori information, is used.
Given this nature of the cryptanalysis, our notion of
“local entropy” and “local unicity” emerged.

The properties of local entropy are characterized
by HL(s), defined in terms of the Shannon entropy
for a block of message. For a message M of length
|message|, and a string or block within the mes-
sage that currently needs to be decrypted, s of length
|string|, it is assumed that the entropy is measured for
|string| << |message|. The value of this analyti-
cal approach occurs when information specific to the
string is known. Information such as letter frequency,
properties of prior decryption results, or other a priori
information (like context) in general makes up this
knowledge, denoted by S. The combination of string
and the size s defines the local entropy in terms of
Shannon’s entropy as

HL(s) = H(s|S) (14)

Since it can be shown that

H(s|S) ≤ H(s) (15)

then

HL(s) ≤ H(s) (16)

For every block in a message, there is an associated
HL. Calculating HL for two blocks of the same length
provides a baseline for comparison of the uncertainty
contained in each block based on the information and
symbols present in the respective blocks.

Because redundancy is defined as a function of en-
tropy, thus, a local definition for redundancy (RL) based
on equation (8):

RL(HL) = 1− HL(s)

Hmax
(17)

Likewise, the corresponding notion of local unicity
(nL) can be defined as:

nL =
log2|k|

RL(HL)log2|A|
(18)

Taking the ratio between Shannon’s unicity distance
(Equation-(7)) and the minimum unicity distance (nmin,
computed based on the cipher used for a given language)
results in the relationship:

n =
nmin

RL
(19)

Synonymous to the global unicity distance, nL is also
minimum when the denominator of the unicity distance
equation (Equation-(18)) is at its maximum. Since RL

varies between 0 and 1, the denominator of the unicity
distance equation (Equation-(18)) is maximized when
RL = 1 (i.e., when there is a perfect redundancy
that leads to null uncertainty about any character in
the message). Therefore, The minimum unicity distance
when RL = 1 is:

nmin =
log2|k|
log2|A|

(20)

Some key solution sets, such as the solution set for
a substitution cipher, are also affected by a reduced
number of symbols in a block. For a block with u unique
symbols, the possible number of keys in a substitution
cipher, for instance, is given by

|ks| =

(
|A|
u

)
The key solution set for the block are, |ks| ≤ |k| and
nL ≤ n.

The unicity distance is bounded for values of
0 ≤ RL ≤ 1. When none of the a priori information
about the block is available, i.e., RL = 0, then n = ∞,
and when total information about the block is available,
i.e., RL = 1, then n = nmin. Therefore,

nmin ≤ n ≤ ∞ (21)

III. EXPERIMENTAL CONDITIONS AND RESULTS

As an example for demonstrating HL and nL, we
will show how the analysis of local information (i.e.,
M -grams of size much smaller than the message size)
from a ciphertext in conjunctions with a priori infor-
mation can be used and applied to the blocks in the
ciphertext to solve a decryption problem. In this case,
the language of the message is English (|A| = 26)
and the cipher used is a substitution cipher (i.e., with
|k| = 26! ≈ 4.2× 1026) [15]. Encrypted data for the
messages comes from selected works of literature found
at the Project Gutenburg’s [16] website.

Since our demonstration involves analyzing a priori
information consisting of M -grams of lengths 2 and 3,
identical letters that occur in succession in a string (such
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Author Title Author Title
Asimov Foundation Dickens A Christmas Carols
Asimov Foundation II Dickens Great Expectations
Bacon The Advancement of Learning Fitzgerald Anthony Patch
Bacon The New Atlantis Fitzgerald Flappers and Philosophers
Boswell The Journal of a Tour to the Hebrides Grey Riders of the Purple Sage
Boswell Life of Johnson Grey The Plainsmen
Burroughs Tarzan Hume Enq. Concerning the Principles of Morals
Burroughs The Lost Continent Hume Dialogues Concerning Natural Religion
Bronte The Professor Milton Areopagitica
Bronte Jane Eyre Milton Paradise Lost
Bulfinch Bulfinch’s Mythology, the Age of Fable O’Henry Cabbages and Kings
Bulfinch Legends of Charlemagne O’Henry Options
Bunyan An Exhortation to Peace and Unity Poe Collected Works, Vol. 1
Bunyan The Works of John Bunyan Poe Collected Works, Vol. 2
Carroll Alice in Wonderland Scott Ivanhoe
Carroll Through the Looking-Glass Scott The Kenilworth
Christie The Mysterious Affair at Styles Stevenson Dr. Jekyll and Mr. Hyde
Christie The Secret Adversary Stevenson Kidnapped
Dafoe Jane Eyre Swift A Modest Proposal
Dafoe Moll Flanders Swift Gulliver’s Travels

Shakespeare Complete Works

TABLE III: Training Corpora

as ‘ee’, ‘ss’, etc.), and the maximum number of times a
letter appears in a string of length n. Here, n = 26.
M -grams for the property sets are taken from training

texts representative of the English langauge. Any M -
gram encountered during training is marked as allowed
while the remainder are forbidden. Each M -gram found
in the ciphertext are analyzed and mapped, resulting in
impossible M -grams removed from consideration for the
key mapping. The ciphertext is mapped to possible plain
text and the set of resulting mappings are compared to
the list of forbidden M -grams. Forbidden M -grams are a
powerful set because the number of forbidden M -grams
increases rapidly as M increases (see Table II) [11], [17].

In a limited length strings, |string| << |message|,
letter counts are indicative of the distribution of letters.
Among the counted symbols, the high and low frequency
letters are of high interest. For instance, In a string where
|string| = 26, only the letters o, l, and e occur 12 or
more times, while the letters j, v, and z occur less than
5 times. Therefore, any ciphertext letter that appears 6
or more times in a string of length 26 cannot be mapped
to j, v, or z, and any cipher text letter occurring 12, or
more, times can only map to o, l, or e.

Intersecting the results from each of the above sets
until a single solution is left, narrows the possible
mapping solutions. Obtaining that solution completes the
process. During testing, the final mapping is compared
against the known key to verify accuracy.

Training for the tests was conducted on a corpora of
forty one texts representing multiple genres and time
periods. Tests were performed on texts curated from
Project Guttenburg library [16].

The size of the M -grams and the words are typically
much smaller than the length of the entire message.
Information about the message is derived from looking
at only a portion of the available message. Global
information is limited to the key known while processing
the M -grams. As previously stated, the focus of our
investigation is a small subset of letters from which
we attempt to infer as much information as possible
using the sets that represent observed language statistics.
The a priori knowledge about the language, possible
key mappings, and input ciphertext are applied to M
characters from the message for analysis. Forbidden
M -grams, for example, restrict possible key mappings.
As the possible mappings are combined through set
intersection local data is combined and then shared.

An example of this effect can demonstrate the use of
local information. Assume that a part of a message given
in the ciphertext as:

rqxxrcq

Further, assume that M -grams allowed are limited to
m = 2 and m = 3 as shown in Table IV. Beginning
at the first symbol in the message (i.e., the ‘r’), the
ciphertext letter ‘r’ can only map to plaintext letters
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‘a’, ‘e’, ‘g’, ‘i’, ‘l’, ‘m’, ‘n’, ‘o’, ‘s’, or ‘t’. All other
mappings are not possible, given the restrictions on the
allowed M -grams list for m = 2. The next ciphertext
letter (i.e., ‘q’) also maps to the same possible letters.
Taking the next symbol in the message (i.e., ‘x’), it
adds no new information, but the addition of the second
occurrence of the letter ‘x’ from the message narrows
the range of possible letter mappings for the ‘x’ to
those 2-grams that appear on the list from Table IV as
doubled letters. The ciphertext letter ‘x’ can only map
to the plaintext letters ‘e’, ‘l’, or ‘s’. Intersecting the
ciphertext’s 3-gram ‘qxx’,and the possible mappings for
‘x’, the only possible 3-gram mapping is ‘ess’, which
means,

q 7→ e

and
x 7→ s

Coming back to the 3-gram at the beginning of the
message(i.e., ‘rqx’), with the limitations on the allowed
3-grams leading to a single mapping of:

r 7→ a

The a priori knowledge in the form of statistics of
the language taken from a representative sample of the
language, is employed using the input ciphertext message
stream as an inference target to infer more information
about the plaintext message. Taking few symbols at
a time, the information is inferred locally and then
shared as new a priori knowledge about the rest of the
ciphertext. However, the global information about the
full message was not required for decryption.

Previous and contemporary methods used to decrypt
substitution cipher messages rely on global information.
For instance, the letter frequency method [18] counts
the number of occurrences of a symbol in a message,
and a guess is made about the mapping based on the
a priori knowledge about the letter frequency in the
language based on global counts of letters encountered
in the message. Although the letter frequency method is
effective for about 80% of the time [19], the accuracy
is highly dependent on the number of symbols in the
message, generally requiring several thousand symbols
for a successful decryption of the ciphertext. The relax-
ation method used by Peleg and Rosenfeld [12] requires
solving a global constraint equation requiring more than
a thousand characters on average, for a reliable decryp-
tion [18]. But, using our method results in a successful
decryption with just several hundred symbols (i.e., our
method shows an increased efficiency in decryption,
approximately at an order of magnitude of 10, while
simultaneously decreasing the amount of time required
for the decryption.). A summary of the experimental
results comparing our method to our predecessors’ and

Allowed 2-grams Allowed 3-grams
ag age
am ame
ee ent
en ess
ge ion
io sag
ll ssa

me
nt
on
sa
ss
ta

TABLE IV: M -grams for example

contemporaries’ is shown in Table V.
Even though our demonstration example has limited

language possibilities, but, since the principles guiding
the usage of a language are universal, that makes our
method and findings (i.e., the information about a part
of the plaintext message can be inferred from a cipher
text block that is adjacent to it in the ciphertext message)
reported in this paper extrapolatable.

Type of Test Authors Average Symbols Test Time
Relaxation Peleg and Rosenfeld ≈ 1000 18+ hrs
Letter Frequency Experimental 2000 - 4000 ≈ 3.3 sec
M -grams Experimental 200 - 400 ≈ .25 sec

TABLE V: Previous Experimental Results [12], [18]

IV. DISCUSSION

In this paper, we presented a closer examination of en-
tropy and its relationship to entropy in decryption. Local
entropy (i.e., the entropy of a block of the ciphertext) can
be exploited using the available a priori knowledge about
the cipher and the language of the plaintext message.
The a priori information in terms of language statistics,
including the information given by forbidden M -grams,
can focus and narrow down the decryption effort on a
subset of all possible solutions, increasing the fidelity of
decryption. Making use of the local entropy facilitated
the reduction of the number of symbols required for
decryption of a message using a substitution cipher by
the factor of 10 over other commonly used decryption
methods. The time required for decryption was also
substantially reduced.

Making use of local entropy can be accomplished
by implementing a system that calculates HL(s) and
nL for all blocks in the ciphertext. The purpose of the
calculation is to find the local minimums for HL(s)
for various lengths of a block, s, in the message. As
evident from our results, some blocks of the encrypted
message may have lower local entropy, and provide
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opportunities to infer information about the cipher key
leading to a faster and better decryption. Identifying
the blocks of the message that are susceptible to local
analysis allows focusing on that block of the message to
capitalize on the available information, and curate the
a priori information and use it for the decryption of
other blocks of the ciphertext. Local entropy and local
unicity distance provides an explanation for the success
of algorithms that do not decrypt an entire ciphertext at
once. Techniques involving both local entropy and local
unicity, aid in understanding the message, the decryption
process, and show promise in the implementation of
efficient decryption algorithms.

Another use of local entropy is to calculate how much
information has accumulated in a message fragment,
or “shard.” Breaking the message into shards and then
applying distinct and different key/cipher combinations
for each shard results in a much stronger cipher while
treating each shard as an orthogonal decryption problem.
If the shard is correctly sized in such a way that
there is not enough redundancy present in the shard to
meet the local unicity distance constraints will help in
hindering the decryption of the shard by an adversary.
The difficulty of decryption is inversely proportional to
the size of the shard. This is the crux for the development
of polymorphic ciphers [20], and spurred investigations
into polymorphic RNGs to combat Venona style attacks
[21].
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