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Abstract—Set Theoretic Estimation has been used in diverse
applications for quite some time. Most applications use a Hilbert
space for problem solving; however, if a distance metric is not
needed, the complexities and features of Hilbert space may not
be required. A recent attempt to extend STE methodology to
cryptography has led to a refinement of the set space used
for this application. In some cases, such as cryptography, a
topological space provides the necessary functions and structure.
Solving this problem in a less restrictive space allows for ease
of implementation and increased computational speed. A less
ordered topological set space in which data is set and manipu-
lated is described, along with the required functions to operate
on the data. Possible extensions of this space abstraction are
also presented for problems exhibiting similar characteristics.
Cryptography is considered a difficult problem in any space, so
the problem is both a relevant and illustrative demonstration of
the results of solution space selection. We employ set methods
and select an appropriate space in which to solve cryptography
problems.

I. INTRODUCTION

Set Theoretic Estimation (STE) is an emerging technique
that has been applied successfully in diverse fields. This
includes class identification, which applies not only to system
analysis, but also to the analysis of regular languages, con-
nectedness problems, discernibility, and communications [1],
[2]. In this paper, we explore the potential applicability of set
theoretic space selection and abstraction to the problem of
decryption. We present an elementary framework and examine
its properties when applied to several cipher systems; namely
the shift, substitution (S), permutation (P), and block ciphers
mixing S and P methods. Although early in development, the

method appears to offer potential merit for justifying further
research and development.

II. BACKGROUND

A. Set Theoretic Estimation
The first step in understanding STE is to define the sym-

bols used to communicate allowable operations and concepts
precisely. The notation of both First Order Predicate Logic
(FOPL) [3] and standard set operations apply. Common
symbols, such as ∀, ∃, and ∃! are defined as meaning “for
all,” “there exists,” and “there exists exactly one,” respectively.
Standard definitions are also applied to the ∩, ∪, ⊂, and
∈, as “intersection,” “union,” “subset,” and “element of,”
respectively [4]. Rules are expressed as assertions in STE.
Assertions consisting of the symbols become the language
and grammar of STE. Each rule or constraint is represented
by its own unique set. Information known about both the
inputs and rules is treated similarly. An assertion, A, takes
the set of possible inputs and gives a set of resulting outputs,
or solutions, for the operation, O, as specified in the rule. For
a particular input, i, this output is expressed as

Oi = A(i) (1)

The set of all possible solutions for all possible inputs, called
a “property set,” is described as

O =

m⋃
j=1

Oj (2)

and is found in an m-dimensional solution “space” known as
Ξm. The space is composed of elements called “points,” each
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representing a member of a solution set, Φn = O. Points
in Ξm are formally known as the set theoretic estimates.
Multiple rules can be asserted, resulting in multiple “property”
sets in the solution space. For each rule asserted, there will be
a Φ representing the solutions and Φ̄ consisting of all other
points in the solution space. Values of Φ are determined by the
nature of the application. For instance, in a communications
application expressed in terms of voltages Φ would also be a
range of voltages. There may be many distinct subsets of Φ
that are defined by the input to a rule.

Traditional STE is used in Ξm space, which can be a finite
or infinite Hilbert space. Hilbert space is both a complete
metric and vector space. Many Hilbert spaces exist, but the
Hilbert space selected for use will implement a specific metric
used to calculated distance between points in the space.
Selection of such a space depends on the application and the
nature of the points being ordered. The result of the metric
is a mathematically ordered set, a bounded volume, where
points in Ξm have a definite spacial relationship with each
other. Mathematical and set operations are performed on the
shapes and points in the space. The geometric shapes resulting
from the ordering of the set greatly simplifies visualizing the
operations on the sets.

The function

d(·, ·) : Ξ× Ξ→ [0,+∞)

is said to be a distance, or metric [5], function if it has the
following characteristics:

(∀(a, b) ∈ Ξ2)d(a, b) = 0 ⇔ a = b

(∀(a, b) ∈ Ξ2)d(a, b) = d(b, a)

and

(∀(a, b, c) ∈ Ξ2)d(a, c) ≤ d(a, b) + d(b, c)

The diameter of a set, S, is represented by δ(S) and is said
to be bounded if, for the set S,

δ(S) < +∞

The goal of STE is to find an answer to a problem described
by set membership rules. Starting in Ξm, each set Φn is
considered in turn. Each Φn contains only those possible
solutions that follow the rule that the assertion describes.
Since Ξm contains all possible solutions, then the solution
P must be in the solution space and must be a member of
the property set for each assertion if a solution exists. That
is, if ∃P then

P ∈ Ξm

and
∀Φn → P ∈ Φn

Further, if P is in each of the solution sets, then it must also
be true that

P ∈
n⋂
i=1

Φi

If a solution is found in the intersection of the sets, the
intersection is said to be “consistent.” If it is not, then
the intersection is said to be “inconsistent.” If the resulting
solution has exactly one answer, ∃!, the solution is said to be
“ideal.”

When a particular input is applied to the assertion repre-
sented by the set Φn, then part of the set represents the valid
outputs for that input. Φn is then constricted to a subset Ψi.
If one set subsumes another set, that is if

Ψi ⊂ Φn

then one can work with Ψi rather than Φn during calculation.
By being a member of Ψi, membership in Φn is also
established. Further, if a single set, Ψj , is subsumed partially
by a group of other sets, i.e., if

∀m ∈ Ψj → ∃Ψi | i 6= j ∧ m ∈ Ψi

where ∧ represents the logical ‘AND’ operator, then Ψi may
be removed from calculations without loss in generality.

Subsuming sets reduces the overall number of sets. Com-
bettes recommends the elimination of those sets that add little
or no value in determining the final solution when applied
with other property sets to an input [5]. Eliminating non-
contributing property sets results in increased computational
efficiency, as well as time and memory savings.

Most operations defined for STE directly manipulate sets.
However, there are no general rules for construction of these
sets. Each set must embody an assertion that describes the
output in some fashion and excludes other portions of Ξm

when applied to an input. Constraints about a system may
also be asserted using distance functions or by setting hard
boundaries.

Though often used, distance metrics are not required for
STE. Points can be manipulated by purely Boolean operators
in a topological space. The topological space can be used
to reduce computational effort if solutions can be readily
calculated for the property sets. No distance metrics or
geometrical treatment is required and, therefore, the additional
constraints of metric and vector spaces are no longer needed.

Combettes also notes that the approach to many estimation
problems identifies solutions in Ξm that violate the constraints
of the original problem. In response to this potential violation,
the goal of STE is to “follow the notion of feasibility,” [5] and
produce solutions whose main function is consistent with all
known a priori data about the problem in the post application
analysis.



B. Communication Theory of Secrecy Systems
Shannon defined several measures of interest in the secrecy

paper. One of the more important statistical and informational
measures is “unicity distance,” (n). Unicity distance is the
average number of encrypted symbols needed to break a
cipher. Mathematically, n is given as

n ≈ log2|K|
Rλlog2|A|

(3)

where Rλ is the redundancy of the language, |K| is the
number of keys in the cipher, and |A| is the number of
symbols in the encrypted alphabet. For instance, Rλ has
been calculated to be approximately 0.75 for the English
language. In general, languages follow statistical patterns that
vary slightly from user to user and message to message.
Implied in the unicity distance is the need to find ways to
increase unicity in order to keep encrypted data secret.

The existence of an Rλ > 0 indicates that a language
has redundancy and is, therefore, susceptible to statistical
attack. Redundancy provides a clue to the possible role
of the duplicated symbol or collection of symbols present.
With respect to letter probability, non-uniform distribution
of letters in the language can be exploited to correlate their
occurrences to symbols in the encrypted alphabet. Some of
these measures include letter and word frequency, word size,
and combinations of letters. Cryptographers have successfully
decrypted messages using these statistics for many years.

Among the techniques that Shannon explored was the use
of language regularity that appear as word repetition and
patterns. Such regularities were believed to be statistically
characterized. Since the elemental analysis is done at the
character level, identifying word patterns ultimately result in
letter patterns, which can then be measured and described
statistically. The chance of encountering a particular combi-
nation of letters is based on their frequency in the language.
Shannon called the combination of m letters “m−grams.”
As m becomes larger, many combinations of arbitrary letters
cannot be decrypted into understandable text. m−grams can
be characterized by how often they appear in a language.

Using the shift cipher, Shannon demonstrated how
m−grams are used in decryption. Shannon selected a plain-
text of the letters and encrypted them using one of the
possible keys. He then applied all possible decryptions for
the encrypted data. Starting at the first letter of the resulting
cryptotext, each key was applied, resulting in 25 possible
decryptions. For 1 ≤ m ≤ 6, Shannon formed the
appropriate m−gram for each possible decryption. He then
checked the probability of each m−gram for each possible
decryption. If the probability fell to 0, the key was abandoned
as impossible.

Trivially, all decryptions are possible for a single letter, but
beginning with the 2-gram combinations, some keys can be
eliminated. Shannon noted that there are different statistics for
the case where the first letter in the encryption begins a word
and another set of statistics for letters occurring elsewhere in
words [6]. Shannon also calculated the entropy to show it was
decreasing towards a solution. In time only a single key with a
probability greater than 0 remained. The selected key was the
correct key, demonstrating the correct application of a brute
force attack aided by the a priori knowledge of m−gram
frequency and probability in English of ordered letters.

While Shannon did not specifically indicate the mathe-
matical nature of his attack, it included commonly used
techniques. These sets are the m−grams for 1 ≤ m ≤ 6.
Each m−gram result is a set with a possible decryption using
the encrypted message, Ek(M), as the input. The key is used
as a transformation function from the encrypted to decrypted
space. The goal is ∃!k → Dk(Ek(M)) = M . However, it is
also acceptable to find a set of keys, k ⊂ K that reduces the
probable keys to a smaller number than all possible keys.

Describing the desired result in terms of m−grams with
their probabilities fulfills the conditions of STE. Intersections
are made for m−grams that are members of all of the
defined sets. Shannon ignored m−grams that contain smaller
m−grams whose probability is 0. Bayes Law [7] shows that
if an m−gram has no chance of occurring, the probability
of any other m−gram built on it is also non-occuring.
Once an m−gram with 0 probability is encountered, the key
associated with that m−gram can be eliminated from further
consideration.

C. Topological Space

Evaluating the space abstraction in STE as a consequence
of Shannon’s m−gram method of message decryption yields
the following list of requirements for the space:

1) The space must be finite;
2) The space is discrete;
3) No distance metric is required; and
4) Set operations are defined in the space, especially

intersection.
Hilbert space is infinite and continuous, typically using a

distance metric based on how the points in STE are ordered
as part of the solution methodology. A finite subset of the
Hilbert space could be employed, but Hilbert space has more
features than the problem requires. Therefore, it may be easier
to manipulate a different space and more closely follow the
characteristics of the solution without including unnecessary
overhead in processing data. One type of space that embodies
these characteristics is topological space.



Topological spaces are spaces where sets define the
space [8]. They are typically used to formalize concepts about
a set, such as convergence, connectedness, and continuity.
Each space is defined over a set X by a topology T . T is
a set of subsets that include X , the empty set Ø, and subsets
of the set X of interest. Any sets formed by applying the

⋃
and

⋂
operators to any collections or sets found in T are also

found in T . Elements found in T are called “points.” Sets in
T can also be said to be either “open” or “closed.” Open sets
do not include their boundaries while closed sets do.

The composition of a topological space makes it well suited
for representing and operating on sets. Topological spaces
cannot be infinite because T is a set and Russell’s paradox
forbids an infinite number of subsets [9]. Neither does a
topological space have a distance function. However, logic
and set functions can be applied to sets in the space, so long
as the proper topological space is selected. Thus topological
spaces are a more natural choice than Hilbert spaces for this
type of STE operation, since it reduces the computational
overhead needed to deal quickly with encryption.

III. THEORETICAL FRAMEWORK

To illustrate the proper use of topological space, we will
first show how the space is populated for a decryption
problem. Assume that a decryption problem involving a
message, M , is to be solved using STE. We must first select
a topological space in which to apply the technique. Without
any a priori knowledge all keys that can decrypt M are
equally probable. That is, ∀ki ∈ K, where ki is a possible
key in the key space, K, and M = Dk(M),

p(ki = k) =
1

|K|

Thus, the space must contain the set of all possible keys as
an upper bound.

Let the solution set be populated with the power set of the
key space, denoted as Pow(K). All possible subsets of K
reside in the space, allowing set operations between subsets
in the space. For set operations ∪ and ∩ applied to two subsets
in the space, the set that results from the set operation will
also be in the set. All Φn applied to the message M will also
be in the space. No extraneous information resides in the
population of the space and it is not necessary to perform an
Optimal Bounding Ellipsoid (OBE) function [10]–[12] at the
conclusion of a set operation to make future mathematical
calculations easier. Further, no error can be inserted into
the set because the set is never expanded for computational
convenience (since we are not operating on volume, but rather
operating on the set). The space is closed over set operations

so manipulations of the set of remaining possible keys is
efficient.

The key set used in topological space depends on the cipher
used in encryption and the message, M , under consideration.
Ciphers are designed to exhibit a one-to-one mapping. That
is, each key maps the input message, M , to a unique cipher
text encryption Ek(M). Therefore, for each cipher text block
∃!k results in the correct decryption. Shannon predicated
his calculation for unicity distance on the assumption that
H(k|Ek(M)) = 0 [13]. However, there are cases when
several keys can yield the same decryption given the same
input message. In these cases Eki(M) = Ekj (M), where
i 6= j. Such keys are said to be equivalent for message M .

IV. THE APPLICATION

A. An Example Using Various Ciphers

Verifying that Shannon’s m-gram example is compat-
ible with STE provides an instance of a non-Hilbert space
application in topological space. The goal of the experiment is
to use a source corpus to provide information about m-grams
in a language and then attempt to decrypt a cipher encrypted
data stream using data from the corpus. Success is indicated
by recovering the correct key value used in the encryption.
To demonstrate our approach, we begin with texts known to
be written in English. Each text is separately encrypted using
a cipher that ensures that the encrypted data stream is not in
plaintext form. Samples of literature taken from the Project
Gutenburg [14] library in .txt format serve as the corpus for
m-grams, as well as the source for encryption. The entire
process is automated.

Unlike Shannon’s m-gram approach, which involves find-
ing the most likely m-gram for the input string, our approach
eliminates m-grams that are not valid. Forbidden m-grams
encountered during decryption indicate that the key used in
the decryption is incorrect. Since forbidden combinations of
letters cannot occur in a valid string of a message in the
target language, impossible m-grams can only come from
an incorrect decryption caused by using the wrong key for
the message being decrypted1. When forbidden m-grams are
encountered the key used to create the decryption can then
be eliminated from further consideration. In effect, we look
for strings that cannot occur in normal speech (m-grams with
a 0 probability). Shannon stopped his consideration of a key
when a forbidden m-gram was encountered, but he contin-
ued seeking the key whose probability was 1. Eliminating
all impossible keys does the same thing, leaving only that

1We will deal with the case of deliberately-inserted “pads” of nonsense
plaintext in a separate paper. This paper deals only with the general
development of the STE method for shift, S, P, PS, PSP, and SPSP block
ciphers.



key which is possible. We call this method the “Last Man
Standing” scenario.

The steps required to complete STE decryption are as
follows:

1) Train the m-grams from the corpus - The input data first
has all non-alphabetic characters removed (including
spaces). Encrypted data is read in as strings of the size
being trained. Training starts with the first character in
the file and increments one character at a time until each
m-gram is processed. Processing consists of recording
that an acceptable m-gram was found and then incre-
menting the position in the file by one m position. Any
m-grams found are removed from a list of “forbidden”
m-grams. What remains are m-gram combinations not
found in the language. Training continues until the
entire file has been processed and each m-gram of
interest has been trained. In this specific implementation
of m-gram training, the size of m-grams has been
limited to 2 < m < 6, because the number of possible
m-grams to track quickly increases.

2) File Selection and Encryption - An electronic file is se-
lected and a key is pseudo-randomly selected by means
of a cryptographic pseudo-random number generator.
The file is encrypted using the selected key and all
non-alphabetic characters are removed from the input
file. Several types of encryption, including the shift, S,
P, PS, PSP, SPSP, and block ciphers of the same type
were used. The texts selected for this experiment, and
their respective authors, is found in Table I.

3) Decryption - All possible keys for the cipher are con-
structed and marked as possibly correct. The encrypted
data file, constructed in step 2, is then decrypted and
analyzed. Starting with two letters from the encrypted
file, each key is applied to determine if it can pos-
sibly be the correct key. If the data resulting from
the decryption violates the m-gram probabilities, the
key is marked as “not possible” and is removed from
further consideration. After the final key on the list is
attempted, the number of keys still possible is counted.
Cycling continues until less than two keys remain or
the input file runs out of data.

Finding a single key indicates that the decryption process
has selected a key as the correct decryption key. A result of
0 keys means that the program could not find the key and all
possibilities were eliminated. Because the program selected
the encryption key in step 2, the original key is available
for comparison. The success of the decryption is verified by
comparing the encryption and decryption keys.

Implied in the forbidden m-gram technique is the knowl-

TABLE I
TWO BYTE BLOCK FILES USED FOR TESTING

File Title Author
1linc11cp.txt The Writings of Abraham Lincoln Abraham Lincoln
1onwr10cp.txt On War Carl von Clauswitz
alice30cp.txt Alice in Wonderland Lewis Carroll

1anne11cp.txt Anne of Green Gables Lucy Maud
Montgomery

hoend10cp.txt Howard’s End E. M. Forser
jandc10cp.txt Jefferson and His Colleagues Allen Johnson
jmlta10cp.txt The Jew of Malta Christopher Marlowe
lglass18cp.txt Through the Looking Glass Lewis Carroll
wwill10cp.txt The Wind in the Willows Kenneth Grahame
wwrld10cp.txt The Way of the World William Congreve

edge of which m-grams are permissible and which are not. No
ordering is required. The only information needed is whether
or not a particular m-gram is allowed. For m-grams of size n,
there is no relationship between m-grams to determine which
are and are not allowed. The number of m-grams that can be
formed, and need to be checked, for a string of n letters is
given by ln, where l is |A| and n is the number of symbols in
the string. English uses |A| = 26. As n increases, representing
each combination as a bit results in increasingly larger number
of bits. By the time that n = 6, the total number of bits is
308,915,776 bits. Because of limitations on the amount of
memory available and the effort required to store and retrieve
data from such a large file, m-grams larger than m = 6 are
not presently considered for use.

Multiple m-grams may reside in a string. For a string of
size x, where x ≥ 6 letters, the number of m-grams available,
|mg| is given by

|mg| =

6∑
i=2

(x− (i− 1)) (4)

With each symbol input from the ciphertext, up to five
data points are added to the sum of knowledge about the
decryption. All languages have inherent symbol repetition.
Inputs may be repeated if the letters received are repeated.
Gathering more than one m-gram per input symbol helps
offset data repetition. In Shannon’s example of m-gram use,
only the m-gram formed at the beginning of the ciphertext
was considered. Other m-grams formed from the middle
of the stream were not. However, the use of mid-stream
(intermediate) m-grams is valid because it is equivalent to
beginning the decryption at an arbitrary point within the
encrypted message.

All keys are assumed to be equally possible at the beginning
of the decryption. There is no a priori knowledge about the
keys that would reduce that number until encrypted letters are



analyzed. Letters are received one at a time and analyzed in
the same order. Decryption does not wait for the full string
to be completed prior to analyzing the message. The goal
is to achieve a decryption using as few letters as possible,
developing the solution as the string develops.

Developing a solution depends on applying property sets
that can gradually eliminate possible solutions. In this ex-
periment, the language of the message was English. As the
English language set is entirely contained in the natural
language set, the set of natural languages can be ignored.

The remaining property sets used in the example consist
of those applied to letters, words, and sentences. Letter sets
are made up of forbidden m-grams. Forbidden m-grams are
compiled during the training process and kept in sets by
the size of the m-gram. Word sets are made up of two
dictionaries: a lexicon of words in the language of interest
(not including proper nouns) and a list of proper nouns drawn
from multiple languages. Sets for words are applied to the
decrypted data to ensure that the entire data stream can be
split into a continuous group of words. All possible word
solutions are produced. The word set does not ensure that the
word combinations in the potential message are grammatically
correct. This task is left to the last set which is a set composed
of grammatically correct sentences. A routine is then called
that attempts to parse the word grouping. If a parsing on
one or more of the possible word groupings is returned as
grammatically correct, then the data is readable in some form.

The steps of this method have the advantage of being
very modular. Modularity facilitates testing and allows com-
parisons of the results to focus on the differences between
corpora. Sets are formed and called as needed. Sets can also
be from any corpus or language that uses an alphabet.

Testing membership in each of the sets used in the example
can yield one of two results: true or false. True indicates
that the selected decryption keys possess the property of the
set. There is no degree of membership. Membership is either
complete or not at all.

Several sets of tests were conducted to demonstrate the
effectiveness of STE in topological space. For encryptions
that involve encrypting the message one alphabetic character
at a time, the shift, substitution (S), permutation (P), and block
ciphers composed of PS, PSP, and SPSP ciphers were tested.
By testing the S and P ciphers, both confusion and diffusion
encryption techniques are shown to be susceptible to STE.

B. Single Byte Cipher Results

Single byte ciphers are those which operate on a single
character in the English language, represented in ASCII by a
single byte of data. The shift, S, and P ciphers are all single
byte ciphers. In this case, the P cipher permutes within the

TABLE II
TEST RESULTS FOR THE SINGLE BYTE CIPHER

Cipher No. Tests % Solved Mean Characters Time
Shift 4916 95.487% 5.55 < 0.5ms
Substitution 1437 85.53% 256 50.7 s
Permutation 1047 99.85% 256 0.563 s

same character or byte. Results for these ciphers are as shown
in Table II.

For a shift cipher in English n ≈ 1.3 characters [13]. For
the S cipher, the n ≈ 28 characters and 4.85 characters
for the P cipher. The mean, µ, is the average number of
characters that are required by the program to find the correct
decryption key for the encrypted file. Although the results are
above the P cipher’s unicity distance, STE methods decrypted
more quickly than other common decryption methods. Typical
results are approximately 50×n for the S and P ciphers, while
STE methods are about 15×n. The time required to solve the
P cipher is shorter than that needed for the S cipher. Reduced
time is a result of the reduced key space size. An S cipher in
English has a key space of 26! keys while the P cipher has
only 8! keys.

Errors encountered in testing primarily came from in-
complete characterization of the English language. Because
English borrows words from many languages such as Danish,
German, French, and American Indian, it is not uncommon
to find “foreign” phrases embedded in texts. Most languages
are not “pure,” rather they borrow from other languages.
Borrowing phrases makes identification of the base language
more difficult. Some borrowed words violate the normal letter
combination found in a language. Analysis techniques based
on a languages’ rules can be fooled by the inclusion of foreign
words, thus yielding an incorrect answer. Methods using a
strict membership criteria, such as the one implemented in
the application used in this paper, are vulnerable to mixed
language problems. This may have contributed to increased
n values seen in the tests.

Names found in the text are also likely to cause errors in
decryption. The use of names has the same effect as foreign
words because many names are borrowed from other lan-
guages or are constructed from sounds. Some literary works
feature constructed names, such as Burroughs’ “Tarzan of the
Apes.” Many of the names found in that work have no basis
in any natural language and prior to their publication were
never heard. The advent of travel between cultures has also
dispersed names beyond the language and area where they
originated. Humans readily recognize names as words not
normally found in the language and treat them as identifiers.
Compensating for the inclusion of new words is accomplished
by allowing the forbidden m-grams to occur several times



before eliminating the m−gram mappings in question. In
other words, a number of violations (or relaxations [15])
should be permitted before eliminating any given key.

C. Multi-byte (Block) Encryption Results

Most modern ciphers deal with the ease of breaking single
byte ciphers by encrypting groups of characters at a time.
Multi-byte, or block ciphers, have a larger alphabet, resulting
in a larger unicity distance. The STE methods used to decrypt
block ciphers are the same as for single byte ciphers if the
blocks are treated as characters in a language. For ease in
working with these blocks, several definitions are required.

Definition 1. meta-s-character
A meta-s-gram (meta(s,m)) is an m-gram composed of m

meta-s-characters. For example, the text composed of ‘theonl’
is a meta(3,2) made up of two different meta-3-characters
‘the’ and ‘onl’. Note that a meta(s,m) is equivalent to an m-
gram of the size s ∗m. �

Definition 2. meta-s-gram (meta(s,m))
A meta-s-character is an m-gram of size s = |m− gram|

alphabetic symbols from the original language. For example,
the meta-character ‘the’ is referred to as a meta-3-character.
Meta-characters are treated as a single symbol in the lan-
guage. Block ciphers that encrypt s characters at a time are
encrypting a meta-s-character. �

Meta-s-characters and meta(s,m)’s take the place of the
letter and m-grams in the encryption and decryption algo-
rithms for block ciphers. Block cipher testing for this paper
was conducted for S, P, PS, PSP, and SPSP ciphers.

Every block encrypted text in this experiment was correctly
decrypted, regardless of the cipher type employed. The time
required for decryption of each cipher type was nearly identi-
cal (see Table III). It should be noted that standard deviations
for the decryption of each text using all encryption methods
was small, amounting to less than 0.03% of the mean in
all cases. Variance in decryption times can most likely be
attributed to the overhead of background tasks in the computer
used to host the tests.

Variation in the time and number of characters required for
decryption appears to be dependent on several properties of
the files. The properties identified were:

1) Author style;
2) File size;
3) Non-standard English (such as names, place names, and

imaginary words);
4) The era in which the work was written; and,
5) The original language in which the work was written.

TABLE III
TWO BYTE BLOCK DECRYPTION RESULTS

File S (sec) P (sec) PS (sec) PSP (sec) SPSP (sec) Mean (sec)
1linc11cp.txt 675 669 671 676 661 670.4

1onwr10cp.txt 14507 14442 14682 14273 14185 14417.8
alice30cp.txt 44617 44690 44386 44470 44473 44527
1anne11cp.txt 778 770 773 774 775 774
hoend10cp.txt 861 847 854 848 795 841
jandc10cp.txt 1387 1381 1391 1388 1398 1389
jmlta10cp.txt 12680 12723 12488 12616 12624 12626.2
lglass18cp.txt 7851 7664 7828 7603 7716 7732.4
wwill10cp.txt 765 743 750 744 750 750.4
wwrld10cp.txt 546 550 550 546 552 548.8

Average 8466.6 8447.9 8437.3 8393.8 8392.9 8427.7

Addressing each point in order, we will start with time
variation due to the different authors. Authors have distinct
styles of writing [16], including the use of similar sentence
structure and lexicon in all of their works. Reusing the
same patterns in structure and words, result in a set of m-
grams trained with those patterns. Consequently, authors that
share similar stylistic patterns should decrypt in similar times
and number of ciphertext characters. For example, Alice in
Wonderland and Through the Looking Glass, both written by
Lewis Carroll, showed similar decryption times.

Message/file size also factored into the efficiency of break-
ing the file in a particular cipher (see Table IV). The smallest
text file sizes in the test set were Alice in Wonderland,
Through the Looking Glass, On War, The Jew of Malta,
and The Way of the World. All of these files were less than
117 kB in size, while all other test files were larger than
245 kB. Shorter messages contain less data and, therefore,
a reduced probability of low entropy events such as m-
gram redundancy. In light of corpus size, these decryption
results support Shannon’s contention that having more data
in a message increases the probability of correct message
decryption [6].

Alice in Wonderland had the greatest diversity of names
of all the files tested. It also took the longest time of all
text files to decrypt. Correspondingly, Through the Looking
Glass also took longer to decrypt than other test files, due to
the presence of names and imaginary words contained in the
text. Low frequency m-grams, including forbidden m-grams,
required more search time and effort to decrypt correctly. The
Jew of Malta, a work that included a large number of foreign
names and locations also had problems with low frequency
m-grams resulting from those words. Patterns in those words,
and consequently these m-grams, are not as likely to be
represented in the m-gram sets.



TABLE IV
TWO BYTE INPUT META-2-CHARACTERS

File Title File SizeSymbols
Seen

1linc11cp.txt The Writings of
Abraham Lincoln 350 105

1onwr10cp.txt On War 483 3464
alice30cp.txt Alice in Wonderland 106 7610

1anne11cp.txt Anne of Green Gables 483 102
hoend10cp.txt Howard’s End 459 102
jandc10cp.txt Jefferson and His Colleagues 315 139
jmlta10cp.txt The Jew of Malta 105 3524
lglass18cp.txt Through the Looking Glass 117 2061
wwill10cp.txt The Wind in the Willows 245 102
wwrld10cp.txt The Way of the World 115 102

Corpus data was derived from the same works of English
used for decrypting meta-1-character files. During the time
periods covered by the corpus, English language use evolved,
changed, and was re-characterized. Word and usage patterns
regularly change with popularity over time. Changes in lexi-
con and language habits can result in literary era dependent
m-gram sets and, therefore, give rise to different decryption
performance. Customizing m-gram sets for a particular era,
over which the language has remained relatively static, may
increase future decryption efficiency and accuracy. Sets of
data derived from the same time period as the message are
more likely to consist of the same word usage and frequency
patterns as the message. Customized time period language
property sets require further research and are beyond the
scope of this paper.

The original language of a text is also important. As
expected On War, originally written in German and later
translated into English, decrypted in a similar amount of time
as The Jew of Malta (written in English, but uses foreign set-
tings), due to location names and foreign words. Even though
foreign texts are translated into English, names, locations,
and other proper nouns retain their original language patterns
[16]. Foreign locations and names are usually transliterated,
producing low frequency m-grams that are mistaken as being
imaginary words. More low frequency m-grams increase
the number of characters and time required for decryption.
Foreign texts in languages closely related to English take
about the same effort to decrypt as English texts with foreign
names and locations. Reducing the effect of foreign words
would require the use of additional property sets drawn from a
corpus of the original language. Future work involves adding
such a corpus and then comparing the decryption times in
cases using different property set combinations.

Because there are many more meta(s,m)s as the
block size increases, using the same corpus for allowable

meta(2,m)grams presents much smaller coverage for larger
block sizes. A corpus sufficient for meta-1-characters has less
coverage for meta-2-characters, and even less coverage for
meta-3-characters. Thus, as the size of the meta-s-character
increases, the size of the corpus needed to represent the
language also must increase in size. Since memory limi-
tations restricted experimentation to the use of meta(2,3)
and meta(2,4) sets for meta-2-characters, only those cases
were evaluated for multi-byte tests. For meta-1-characters,
the percentage of coverage from the corpus for meta(1,3) is
64.3% and for meta(1,4) the coverage is 24%. If the same
corpus is used for the meta-2-characters, coverage is reduced
to 0.597% for meta(2,3)s and 0.003% for meta(2,4)s. An
increase in the corpus size and composition is required to
ensure a sufficient number of meta-s-characters in the meta-
language are represented; however, the specific amount of
increase needed by the corpus requires further study.

The upper limit of the size of m for the meta(s,m)s
included in the corpus is dictated by stylometric and training
constraints. If too many examples of an author’s work are
included in the corpus, the corpus may become over-trained.
Over-training represents one author’s style while ignoring the
patterns found within the body of language. Similarly, as the
size of the meta(s,m)s used as property sets (m) increases,
the meta(s,m)s reflect the style of the author used as a source
in the corpus, thus over-training results and correct keys are
rejected. Over-training can be avoided by using a diverse set
of authors in the training set and limiting the size of the m-
grams used to characterize the language.

V. CONCLUSION

Problems traditionally solved using STE have typically
been placed in a Hilbert space [5]. However, the application of
STE to decryption using language based analysis is shown to
require far less structure than is embedded in a Hilbert space.
m-gram based STE decryption does not require a continuous,
or infinite, space as the application does not require a distance
metric. STE instead requires the application of set functions
on points in the space. As such, topological space is better
suited to set operations because it consists of groups of subsets
taken from the full set of possible keys.

Unicity distance is dependent not only on the cipher and
language, but the content of the message that is encrypted. It is
quite possible to have two messages of the same length where
one message contains enough information to be decrypted
while the other message does not.

STE in topological space proved to be effective in solv-
ing decryption problems. Using a space appropriate for the
application and problem results in a more efficient solution
and reduces the work required to implement the algorithm.



As such, applications having the same characteristics as the
STE based decryption example are better placed
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