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Abstract—Polymorphic ciphers are a relatively new construct
in the field of encryption. Although the first real example of the
encryption, the One Time Pad (OTP), has been known since the
early part of the 20th century, the idea of a “mutating cipher”
has not been implemented and well studied until now. Since these
ciphers are actually “engines” comprised of single algorithm
ciphers with good encryption properties, such as a large key
space, evaluating the characteristics of the engine becomes im-
portant. In this paper, we present a simple method to classify the
polymorphic properties of ciphers and the polymorphic engine.
In addition, the security of such engines is presented, along with
an analysis of the additional latency and overhead costs.

Index Terms—polymorphic encryption, shannon theory, en-
tropy, keyspace, isomorphic key reduction

I. INTRODUCTION

A. Shannon Theory

Modern cryptography is based largely on the Information
Theoretical approach introduced by Claude Shannon in the late
1940’s through the early 1950’s [1], [2]. Key to this study is
the concept of entropy (H(X)) and the related measures of
redundancy (Rλ(X)) and unicity distance (n) [1].

Entropy is a measure of the “surprise,” or change in
knowledge, that encountering the information imparts to the
person analyzing the data. High entropy events indicate that
not much is known about the event and can add a great deal
of information, which can be gleaned from the event. The
lowest entropy events have zero entropy (H(X) = 0), such
as when it is known that an event absolutely must happen
or absolutely cannot happen, can give no new information.
Based on physical entropy and originally defined by Hartley
[3], entropy is defined as

H(X)−
n∑
i=1

pr(xi)log2

(
pr(xi)

)
(1)

and has values as shown in Figure 1.
Redundancy in a language has to do with the repetition

of symbols used in the alphabet of a language. The measure
of redundancy is tightly related to the entropy, as it gives a
measure of how often symbols are repeated in the written
record of the language. Redundancy is related to the number of
symbols in the alphabet and the semantic and syntactical rules
of the language. Every language has its own characteristic
redundancy [4]. English, for example, has a calculated redun-
dancy of approximately REnglish ≈ .75 [2]. Langendoen and

Fig. 1. Entropy Values

Postal took this concept even further [5] when they stated that
each person has their own language and the conglomeration
of the individuals speaking the language have a characteristic
language redundancy. Redundancy is calculated using the
equation

Rλ = 1− H(x)

Hmax(x)
(2)

Redundancy is important because Information Theory [1],
[6] states that information accumulates at a measurable rate
with respect to ciphertext. Shannon calculated this rate of
accumulation and defined unicity distance as the point at which
there was enough information to eliminate all spurious (false)
keys from consideration during the decyrption process. This
measure is defined in terms of the redundancy of the language,
and is determined using Shannon’s [1] equation below.

n =
log|Kc|
Rλlog|A|

(3)

All of these measures are typically applied to the entire
corpus (i.e., body of work) of a language. This is the “global”
value, while smaller portions of a work or message are termed
to be the “local” value of the individual metrics. Because
they are a small portion of the whole, these metrics can vary
greatly from the global values. Individual corpus content also
varies by the habits and practice of the individual speaker.
The unicity distance is a measure of security for the message,
when encrypted as a cipher with a higher unicity distance is
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inherently safer than one with a smaller unicity distance. That
is, if si represents the security of a cipher, then

nc0 > nc1 → sc0 > sc1 (4)

B. Security and Keyspace

While unicity distance is one measure of security, the
keyspace of the cipher can also be used as a security measure.
If a cipher is strong, there are no methods to allow for re-
moving numbers of prospective solutions with the application
of a single key. Each key must be checked in order to find a
solution. Applying each key, in turn, is known as the Brute
Force attack (BFA) [7]. While the BFA is guaranteed to always
find the solution, the time it takes to do a BFA is very large.
On the average the BFA takes

tsolve =
|Kc|ta

2
(5)

where |Kc| is the size of the keyspace for the cipher and
ta is the time it takes to apply the key, determine that the
key worked or did not work, and select the next key in the
test sequence [8]. Therefore, relative security can be measured
in terms of keyspace, since time to solve a cipher depends
directly on keyspace.

|Kc0 | > |Kc1 | → sc0 > sc1 (6)

C. All Ciphers are Ultimately Substitution Ciphers

Keyspace is a valid measure when the time to investigate
the key is the same for the ciphers involved. Feistel showed
that this is the case because all ciphers are ultimately sub-
stitution (S) ciphers [9]. Carlson demonstrated this using the
concept of “isomorphic cipher reduction” [10] in which he
showed that all ciphers could be replaced with an equivalent
S cipher with the appropriate key. In this proof, Carlson made
use of the “metacharacter assumption,” in which he treated
block ciphers with a block size of |B| as being applied to
a “metalanguage” based on the original language with an
alphabet made up of characters with a size of |B| letters in the
original alphabet. As a result of this assumption, Carlson was
able to break block ciphers using the same approaches as used
for single byte S ciphers. This approach was applied to single
ciphers as well as P, PS, PSP, and similar cipher compositions
[10]. He then used this concept to show how “polymorphic,”
or sub-message constrained cipher engines could be used to
defeat that attack.

II. POLYMORPHIC CIPHERS

Polymorphic ciphers [11], more commonly called “mu-
tating” ciphers, are ciphers that are divided into smaller
sections, called “shards.” They are constrained in length.

Definition 2.1 (Polymorphic Cipher): A polymorphic cipher
is a cipher that changes the cipher/key pair at intervals during
the encryption/decryption process. More correctly a “crypto-
graphic engine,” this software uses established, peer reviewed
strong ciphers for some period of time before changing.
Ideally, the changes occur at frequent, short, and irregular
intervals (as measured in alphabetic characters).

Polymorphic ciphers have been available in a limited scope
since the advent of the Viginere cipher in 1553 [7]. Unfortu-
nately, the Viginere cipher suffered from a limited keyspace
with a single cipher. A true polymorphic cipher did not
make it’s appearance until the Vernum cipher (1917) [12].
This version of the polymorphic engine required changing the
password for every character in the message. While it was
termed the only “mathematically provably secure” cipher [1],
the cost of employing the OTP is so onerous that it nearly
bankrupted the Soviet Union [13] and showed that a true
random number generator was required to ensure the safety
of the message content. A summary of the advantages and
disadvantages of polymorphic ciphers is shown in Table I.

Describing polymorphic ciphers can be done using many
metrics. One of the more important is that which characterizes
any cipher by how many times a cipher changes cipher/key
pairs.

Definition 2.2 (Polymorphic Number): The Polymorphic
number (NP ) is defined by the number of times a message or
file will change cipher/key pairs during the encryption process.
Polymorphic numbers may be specified in terms of an actual
number or a formula that indicates the number of changes.
For example, a cipher that keeps the same cipher and key
pair throughout encryption has a polymorphic number of
NP = 1. A polymorphic cipher that changes every x blocks
of characters will have a polymorphic number given by

NP =

⌊
|M |
|B|

⌋
(7)

where |M | is the size of the message and |B| is the size of the
block using the same cipher/key pair. Ideally, the polymorphic
number would be NP = |M |, the polymorphic number of the
OTP.

TABLE I
COMPARISON OF POLYMORPHIC ENCRYPTION ADVANTAGES AND

DISADVANTAGES

Advantages Disadvantages
Vastly larger keyspace Higher latency and overhead
No shard reaches neff Takes more resources
Can be done in parallel More complex
Higher security
Faster
Scalable

In addition to being composed of a single cipher per shard,
polymorphic encryptions may also be comprised of product
ciphers [14]. If a product cipher is used, the order of the
application of the ciphers is important. In order to compare
the security of traditional ciphers and polymorphic encryption
engines using traditional cipher algorithms as base encryptions
for the polymorphic engine via keyspace, it is necessary to
present a single keyspace equation for all of these algorithms.

A. Keyspace
A single equation can be used for calculating the

keyspace of any cipher, or polymorphic cipher that does not
include a randomization algorithm.



Theorem 2.1: The keyspace of any cipher, without a ran-
domization function, can be given by the following equation:

|Kp| =
s∏
t=1

(
n!

n∏
i=1

( r∑
j=1

(
pr(cj)|Kcj |

)))
(8)

Proof: This proof will be in multiple parts. A universal key
space equation must correctly return the same results as an
equation targeting a specific type of cipher. In the first part of
the proof, it will be shown that the equation, with the right
values inserted, reduces to the correct form for ciphers with
an NP = 1.

For the case of a single cipher, there are exactly one shard
and one way to select the order of the ciphers. Therefore, for
NP = 1 the value of s = 1, n = 1, and the probability of
selecting that cipher is pr(cj) = 1. With these values inserted
into Equation 8 becomes

|Kp| =
1∏
t=1

(
1!

1∏
i=1

( 1∑
j=1

(
1× |Kc1 |

)))
(9)

which reduces to

|Kp| = |Kc1 | (10)

as required.
Next, the case of selecting between a number of ciphers that

may be selected and used for the entire message (NP = 1),
the values of s = 1 and n = 1 for a single shard with no
reordering possible for the ciphers results in the equation

|Kp| =
1∏
t=1

(
1!

1∏
i=1

( r∑
j=1

(
pr(cj)|Kcj |

)))
(11)

which reduces to

|Kp| =
r∑
j=1

(
pr(cj)|Kcj |

)
(12)

which is the result arrived at by Shannon in his 1949 paper
on encryption [1].

In the next part of the proof we consider cascade and
product ciphers. Cascade ciphers are a trivial case, since the
various ciphers all use the same key [14]. The keyspace for
a cascade cipher is the same size as for the single cipher and
that reduction has already been addressed. Product ciphers,
however, use a different key for every cipher applied. In this
case, each key must be correctly identified and applied. Since
each key is unique the key space is each keyspace multiplied
together [10], [14]. Therefore, the keyspace is the product of
each of the individual keyspaces. Again, assuming that the
product cipher has an NP = 1, then the value for s = 1.
However, the order is also important. Since NP = 1 there is
no reordering of the ciphers and the n! term, which represents
the number of orders that the product cipher can take, must
also be single. Therefore, n! = 1 while the n term in the
product remains at the n = |p| for the number of product

ciphers used. For this calculation, it will also be assumed that
there is no selection of ciphers at each step. Therefore, the
equation for this case is

|Kp| =
1∏
t=1

(
1×

n∏
i=1

( r∑
j=1

(
1× |Kn|

)))
(13)

which reduces to

|Kp| =
n∏
i=1

|Kn| (14)

as required. However, if the order of the ciphers is variable,
then the number of possible combinations is increased to n!
and that term is not 1. The formula for the keyspace becomes

|Kp| = n!

n∏
i=1

|Kn| (15)

when the initial n term is not replaced by unity. Additionally,
if there is a choice for each step in the product cipher, then the
keyspace term returns to the probabalistic form and reduces
to

|Kp| = n!

n∏
i=1

( r∑
j=1

(
pr(cj)|Kcj |

))
(16)

Finally, each shard is an orthogonal problem and must be
solved independently. Like the keyspace for a product cipher,
the keyspace for each shard must be multiplied together to
arrive at the final keyspace size. For the shard keyspace (|Ks|),
this equates to

|Kp| =
s∏
t=1

|Ks| (17)

and substituting in the value for a shard keyspace found in
Equation 16, the equation becomes

|Kp| =
s∏
t=1

(
n!

n∏
i=1

( r∑
j=1

(
pr(cj)|Kcj |

)))
(18)

which is the same as claimed. A table summarizing the correct
substitutions for each variable in the equation is found in Table
II.

TABLE II
REQUIRED SUBSTITUTIONS FOR EACH TYPE OF CIPHER

Cipher Type s n n! r |K| pr(cj)

Single Cipher 1 1 1 1 |K| 1
Choice of Ciphers 1 |c| 1 |c| |Kcj | pr(cj)
Cascade Cipher 1 1 1 1 |Kmin| 1
Product Cipher 1 |c| |c|! 1 |Kcj | 1
Serial Cipher 1 1 1 1 |Kcj | 1
Polymorphic Cipher |s| |c| |c|! |c| |c| pr(cj)
a|s|=|shards|, |c|=|ciphers|



B. Complexity Analysis of Encryption Types

Since all ciphers are, at their core, S ciphers [9] it is possible
to pre-calculate tables of the mappings used by the cipher
[15]. There is some cost associated with the calculation and
assembly of the table that is the same order of complexity as
the base cipher and is repeated |A| times. That cost is added
to the complexity for mapping. However, the more times the
encryption takes place, the smaller the effect of the original
overhead.

The complexity [16] of several related types of ciphers re-
lated to polymorphic ciphers will be explained in the following
three sections by the type of cipher.

1) Symmetric Ciphers: Most ciphers such as DES, Triple
DES, AES and Blowfish normally operate on a fixed block size
and follow the 1:1 and onto principal. Therefore it is possible
to create a table for mapping each cipher from plaintext to
ciphertext. Then each encryption action can be indexed out of
memory. The complexity for encryption is then O(1) in time
and O(n) in memory, for an alphabet of size n. As such the
symmetric ciphers are independent of the input. We note, that
we have to precalculate the n entries into the table.

The maximum memory requirement is bounded by the size
of the alphabet or the number of blocks. This happens because
the blocks become the alphabet in the meta language. The
memory requirement can be predetermined as the size of the
alphabet or the number of blocks, because the blocks become
the alphabet in the meta language [10]. The constant associated
with the access time is c, where c is less than or equal to
the |size of the alphabet|. The constant c can be reduced by
threading or parallel accesses. For example, if there are four
cores, then c would be 1/|number of cores| = 1/4 = 0.25. For
each individual thread access time is still O(1). But it appears
overall to be faster because the actions are taken in parallel.

2) Asymmetric Ciphers: Any cipher can be mapped into a
equivalent substitution cipher [1] [10] and this remains true for
asymmetric ciphers. Asymmetric ciphers have more than one
key. However, since one of the keys is typically published,
this pair of keys is reduced to a single unknown key that
must be cracked. When creating S tables for both encryption
and decryption it is necessary to create two tables, one for
encryption and a separate one for decryption. In terms of the
required memory it’s O(2n), which reduces to O(n). Once the
cipher is mapped, the access time complexity becomes O(1).

3) Randomization: If the encryption has randomization,
such as modes [7], then the time complexity becomes O(n+1),
which reduces to O(n), where n is the message size. The
modes of operations can have different complexity. Since
each block needs to be operated on separately at least once,
thus O(n) is the minimum complexity. Simple randomization
doesn’t add much to the complexity and most randomiza-
tion involves the xor function. More complex randomiza-
tion schemes will have correspondingly higher complexity.
Therefore the complexity would be the complexity of the
randomization and the cipher itself [17].

III. MODELING CIPHERS BY THEIR POLYMORPHIC
NUMBER

Polymorphic ciphers do not fit easily into the presently
accepted models of ciphers. Because they can be composed
of any type of cipher and frequently change which ciphers
they use the best way to classify them is by their polymorphic
number. All ciphers can be so classified because each cipher
can also be modeled as a polymorphic cipher. Using the base
simple cipher and then sharding the message so that the key
is “randomly” changed accomplishes this change. Therefore,
any cipher being discussed should also give the polymorphic
number as part of the description of the cipher.

A. Deciding Factors for the Size of the Shards

With an increasing number of shards, the overhead also
increases and processing efficiency decreases. Also the number
of keys increase and the encryption model faces the same
problem as the one-time-pad [12]. OTP is the most secure
encryption, but the number of secure keys that must be
properly generated, securely distributed and securely stored
quickly becomes too resource intensive and expensive for any
user to sustain.

Choosing the smallest unit of the information as the size
of the shard results in the message having the largest number
of possible shards. The security gets stronger as the size of
the shards gets smaller. However the processing efficiency
decreases with the decreasing shard size because of the re-
quirement for more resources to cope with the computation of
additional shards.

If the size of the message is equal to |M |, theoretically
the number of possible shards (m) is 1 ≤ m ≤ |M |. The
larger number of shards results in the shards carrying less
information. With the increasing number of shards, the security
increases up to a certain point. According to Shannon [1], it
is impossible to reliably break anything that is smaller than
the unicity distance of the shard, nl. By remaining just below
nl, the shard will remain mathematically secure. If there is
not enough information at n − 1, there is still not enough
information at a shard shize of n− 2, n− 3, n− 4,...1.

The shard size can still be varied to any number below the
unicity distance area to make it virtually impossible to find and
exploit the shard boundaries. In this case it becomes necessary
to pre-calculate the unicity distance. Then the boundary be-
comes data-dependant and effectively pseudo-random. Shard
boundaries are then a session variable and can not be a priori
determined by an attacker. The shard size acts as if it is a key
in the encryption process.

With this constant security with the shard size less than
nl, reducing the shard size is unnecessary and below nl no
additional resources are required to achieve the same security.
The idea is to make the job of decryption as difficult as
possible for the attacker. The size of shard, |S| is calculable
a priori by using Shannon’s equation for unicity distance.

By calculating the global unicity distance prior to encryption
it is possible to to set the shard size before encryption. Then
the shard size can be varied during encryption to confuse



the attacker. This allows the users to consider security levels
and extended efforts to balance these two accordingly. In
this solution, the sizes of the shards were predetermined to
minimize computation and retain security levels while working
in a constrained environment [17].

B. The Polymorphic Continuum

The polymorphic number is actually a continuum of
ciphers and combination of ciphers. At the lower end of the
continuum are single ciphers that use the same password for an
entire message or file. Ciphers with the same NP are ranked
from lowest to highest key space. For example, on the low
end of the continuum are the single ciphers. The other end of
the scale is the Vernam cipher, or One Time Pad (OTP). At
the bottom of the single ciphers is the Caesar cipher, which
has a key space of |A|. Going towards the higher end of the
scale comes a single byte permutation (P) cipher, which has
a key space of 28 = 256 for an ASCII encoded version of
English. Further towards the NP = 2 mark is the substitution
(S) cipher, which has a key space of |A|! (26! for single letter
English). This will continue to NP = 2. The same progression
of ciphers by polymorphic number and key space continue to
the OTP (see Figure 2).

Fig. 2. The Polymorphic Encryption Continuum

This continuum gives the hierarchy of security, as well. Note
that cascade ciphers will act like a simple cipher. Product
ciphers can be reduced to a single S cipher [10] order by
number and associated keyspace. Polymorphic ciphers using
the same cipher type will be lower on the security scale than
those that change cipher types. Product ciphers also act as a
single cipher, since they can be reduced to a single substitution
cipher [10].

IV. CONCLUSIONS AND FUTURE WORK

Polymorphic ciphers are essentially an engine that com-
bines two or more cipher/key pairs together to form what
appears to be a completely different cipher system. At this
time, however, there has been no method suggested that
allows for the comparison between simple ciphers and between
different instantiations of a polymorphic engine. This paper
has proposed that the best way to compare both simple and
polymorphic ciphers is to place them on a continuum that
considers the number of times the engine changes cipher/key
pairs (polymorphic number (NP )) and the key space associated
with such ciphers. For a given NP the ciphers with the same
polymorphic number are then arranged by their key space.

Calculating the key space for a polymorphic cipher can
be done using a single equation. This equation assumes that

no randomization is used as part of the cipher. An equation
dealing with the standard types of ciphers was presented and
it was proven to be valid for those cipher types.

An analysis of the security and the cost of using polymor-
phic ciphers was presented. In general, the higher the value of
NP , the better the security. Latency and overhead are greatly
affected by the ability to encrypt polymorphic ciphers in par-
allel, while most ciphers must be treated linearly. The amount
of speed up is shown, as is its dependence on the number of
threads, cores, or GPUs use. Simple ciphers typically cannot
be handled in this manner, making the additional security
and safety from polymorphic ciphers available while speeding
message handling. Latency, overhead, and additional resources
do not disappear, but in terms of total time to encrypt these
additional costs are hidden due to the parallel treatment of the
message/file.

The need for good RNGs is also shown in the discussion
of polymorphic encryption. If poor RNGs are used the system
becomes susceptible to the Venona attack [13], resulting in
a possible compromise for the encrypted data. However, if
strong RNGs are used then the security, as measured by a
large key space without clues to the key, then the security far
exceeds simple ciphers.
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