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Abstract—All ciphers are a form of the substitution cipher.
Variations of ciphers, such as the P cipher, block ciphers, and
product ciphers have been introduced in an effort to hide
the patterns that filter through the obscuring process. Still, if
the right parameters are used, it is possible to substitute an
equivalent substitution cipher for most encryption algorithms
and then use a property of substitution to greatly simplify the
analysis and decryption of even block product ciphers. In this
paper we also identify and explain exceptions to this reduction.
The purpose of applying this cipher reduction is to strengthen
security by eliminating the weaknesses that reduction identifies.

Index Terms—Cryptography, Polymorphic Encryption, Key
Space, Isomorphic Reduction, Round Ciphers

I. INTRODUCTION

The proliferation of different encryption algorithms over
the last half century have also resulted in the corresponding
creation of breaks in order to both try and prove the efficacy
and weakness of those algorithms. Some of these attacks are
simple and others are extremely complicated. Recent advances
in cryptography involve more information theoretic [1], [2]
techniques in message attack and defense. One of those new
techniques is isomorphic cipher reduction [2], which is the
practice of treating one cipher as if it were another cipher
for purposes of attack, evaluation, and the design of stronger
ciphers. The use of cipher reduction requires the user to
have some basic background in cryptography and an in-depth
understanding of the mathematics behind the use of ciphers.

II. BACKGROUND

In this section, we present the required background beyond
what is normally found in classes on the subject.

A. Differences in Ciphers

Most ciphers are classified by the type of obscuring that is
used in the encryption algorithm. Shannon indicated that the
major types of obscuring were substitution, permutation, and

transformation [3]. Additionally, some ciphers are said to be
“linear.” The linear cipher is

CT = (a(PT ) + b)%m (1)

where CT is the cipher text, PT is the plain text, % indicates
the modulo function, m is the modulus, and a and b are
the secret key(s) shared by the parties to the encryption.
Shannon indicates that this can be any linear operation, which
is characterized by the following relationship

f(x ◦ y) = f(x) ◦ f(y) (2)

Transformation (T) ciphers are ciphers that change the order
of symbols, but do not necessarily obscure the symbols. This
reordering of the symbols can be disorienting, but often it is
easily solved. This type of obscuring is a form of a permutation
(P) cipher that operates on symbols instead of bits.

P ciphers transpose the bits of a symbol and reorder them
in such a way as to obscure the information. There are two
main ways to reorder the information: inside the same symbol
and inside a block of symbols taken together and remapped.
The key for P ciphers is the mapping or location of the bit
in the new symbol/block of symbols. Since most symbols are
composed of a byte, relocation can be thought of as either
inside the same byte or having the possibility of moving across
byte boundaries. Moving bytes into different bytes prevents
byte-wise evaluation of a P cipher since all of the information
for a single byte may not be found in the same byte. Examples
of P ciphers include a bit rotation cipher or rotating bytes in
a block.

While there are many individual encryption functions, all
encryptions treat keys in one of two ways: symmetric and
asymmetric. Symmetric keys use the same key to encrypt and
decrypt, while asymmetric keys employ one key to encrypt
and another to decrypt. There are many ciphers that make
use of symmetric keys. They include most of the S, P,
and T ciphers. Public key encryptions (PKE/PKI) [4] are
the foremost examples of ciphers that use asymmetric keys;978-1-6654-0066-4/21/$31.00 ©2021 IEEE
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however, the value of having two keys is limited by revealing
the public key and leaving only the private key secret.

Ciphers are not always applied to a single symbol [5]. Many
ciphers take a block of m symbols from a message at a time.
For example, AES 256 encrypts 64 byte sized symbols simul-
taneously [6]. These ciphers are known as “block” ciphers,
the Lucifer cipher (later revised and accepted as the first Data
Encryption Standard (DES) cipher [7]) developed at IBM by
Horst Feistel, is generally considered the first such cipher to
be developed and released for use. Block ciphers come in
many forms and complexities, ranging from block substitution
to complex Feistel Round ciphers [6]. Block ciphers have a
larger alphabet than single byte ciphers and are generally more
secure than ciphers with a smaller alphabet size.

An advancement on block ciphers is the practice of re-
encrypting the output of a cipher with a second cipher. These
ciphers are generally classified as being either “cascade” or
“product ciphers” [5]. The difference between the two types
of ciphers is that a cascade cipher uses the same key for all of
the ciphers applied and a product cipher uses different keys for
each cipher. Cascade ciphers are generally weaker than product
ciphers. With a cascade cipher the security of the cipher is
only as strong as the weakest cipher used [8]. Product ciphers
are generally stronger, but that strength comes at the cost of
overhead and latency.

Of the ciphers mentioned, the most important cipher for
this paper is the substitution cipher. Other cipher algorithms
are important, but it can be shown that all ciphers can be
represented as a substitution cipher. Therefore, a more in-depth
understanding of the substitution cipher is warranted.

B. The Substitution Cipher

One of the most basic ciphers is one that has been used for
thousands of years, the substitution (S) cipher. S ciphers have
been known since at least the time of Julius Caesar [6]. The
principle involved is that for every symbol in an alphabet of a
language, that symbol is replaced in an alphabet (A) by some
symbol from the replacement alphabet (A′). Mathematically
A 7→ A′. However, it is not required that A 6= A′, and
in principle, it is quite possible that A 7→ A. In practice
it often occurs that the two alphabets are identical to each
other. The function 7→ is known as a “mapping” and is a
mathematical function that pairs a member of the domain
of the function to a member of the range of the function.
When used in cryptography, the mapping function is a 1:1
and onto (or “bijunctive” [9]) function. While the mapping
from the domain to the range can follow some easily identified
mathematical rule, there is no requirement for a rule to be
specified. Therefore, the mapping can be arbitrarily assigned
between the sets of {A} and {A′}.

The S cipher is defined by an instantiation of a particular
mapping A 7→ A′. Shannon noted that this type of mapping
constitutes the practice of “confusion” of encrypted informa-
tion [3], one of the basic types of obscuring of information. In
addition to identifying the type of encryption provided by the
S cipher, Shannon also noted that the application of confusion

does not disguise patterns in the encryption. Patterns are one of
the keys that allow attackers to decrypt messages without the
secret key [10] and recover hidden messages. The inability to
hide patterns during encryption is a major flaw in the S cipher.

Despite the flaw of failing to hide patterns, the S cipher is
still one of the major building blocks of ciphers. S blocks
are routinely used in modern block ciphers [6] and are
foundational for all ciphers. Horst Feistel, the father of modern
round ciphers, said that, at a fundamental level, all ciphers are
S ciphers [11]. While most cryptographers acknowledge this
(in principle, at least), the equivalence is also literal. Every
cipher can be shown to be an instance of an S cipher, under
the proper conditions.

C. The Metacharacter Assumption

Shannon discusses groupings of letters in a language, called
“n-grams” [3]. These groups of letters are formed from n
consecutive letters, ignoring spaces and punctuation, concate-
nated together. Taken as a group, these collections of letters
have a frequency characteristic to a language. Some of the
combinations never appear in a language and are termed
“forbidden” [2]. The use of n-grams in decryption methods
is well documented [2], [3], [12] and has proven to be very
powerful. However, the use of n-grams has traditionally been
limited to the evaluation of S ciphers. Permutation (P) ciphers
[6] make use of a property of encryption known as “diffusion,”
to spread information across different symbols in an effort to
make decryption more difficult [3]. By moving bits of infor-
mation between symbols during encryption the grouping of
the original information is not known and therefore evaluating
encryption symbol by symbol results in errors that confound
decryption efforts. For this reason, P ciphers, or algorithms
that mix P ciphers with other types of encryption, are thought
to be very powerful [3]. Shannon indicates that compound, or
“product” ciphers [5] of the form

F = LSLSLT (3)

where L are linear ciphers and T are transposition ciphers
are considered to be mathematically strong. Transposition is
a form of the P cipher that changes the order of the symbol
or bits representing the symbol. Transposing bits of a cipher
among a block of symbols is considered even stronger.

Countering permutation is not difficult. Consider an m-
gram where m = |B|, where B is a block of symbols in
which diffusion takes place. If that block is considered to be a
symbol (a “metacharacter”) in a new, related language [2], then
all of the information remains in the same metacharacter and
analysis can be greatly simplified. Metacharacters are part of a
“metalanguage” related to the original, single character block
language from which they are abstracted. It can be shown that
metacharacters have a characteristic frequency that arises from
the speaker in the text [13], [14]. Therefore, an attacker can
use metacharacters as if they were single characters in the new
metalanguage for lexical, syntactical, and semantical analysis.
The typical approach, when used, is to set the metacharacter
size to be the size of a block that is being encrypted [2].



This approach was used with the collision attack to break
applications of the Cipher Block Chaining (CBC) Mode [15]–
[17].

D. Idempotence

Idempotence is a very important property of some mathe-
matical and computer science operations. This property can
be applied multiple times without changing the result of the
application to the multiple individual operations. That is, if
the same operation can be applied more than once and the
result is the same when the operation is applied one, two, or n
times, the operation is said to be ‘idempotent” [18], [19]. For
example, consider the logical AND operation. AND is said to
be idempotent because the result of

A ∧B = (A ∧B) ∧B = ((A ∧B) ∧B ∧B) (4)

The repeated application of logically ANDing B has the same
effect as doing the operation exactly once. The same happens
with logical OR. In mathematics the repeated application of
identities is also idempotent. Boolean algebra is a lattice and
all lattices are known to be idempotent.

In a closely related operation in computer science and
cryptography, idempotence can be applied to some ciphers.
For the S cipher, assume that the output of one S cipher is
then encrypted by another S cipher. That is

CT (M) = ES,k0
(ES,k1

(M)) (5)

For two applications of the S cipher, there exists a third key
(k2) such that [20]

ES,k0(ES,k1(M)) = ES,k2(M) (6)

This says that repeatedly encrypting with the S cipher does
not mean that, as is commonly practiced, that each S cipher
must be solved separately, but rather that all of the S ciphers
can be replaced with a single S cipher. Therefore, any chain
of applied S ciphers can be solved as if it is a single S cipher
with the appropriate key. Mathematically

ES,k0
(ES,k1

(...(ES,kn(M))...) = ES,k′(M) (7)

or symbolically
S0S1...Sn = S′ (8)

III. CIPHER REDUCTION

Cipher reduction is the action of replacing one encryption
with another for analysis and work on a particular cipher, or
group of ciphers. Reduction states that for two ciphers, c0 and
c1, that ∃c0 with k0 and c1 with k1 such that

Ec0,k0
(M) = Ec1,k1

(M) (9)

Furthermore, ∀M having a ki using the cipher c0 → ∃ some
kj such that the mapping {CT} 7→ {PT} is identical for both
pairs of cipher/key. If this is the case, then the cipher that was
originally used to encrypt the message (c0) can be replaced,
or “reduced,” to the new cipher (c1), because the ciphers and
keys are equivalent [2].

In order for reduction to take place, there are certain
requirements that must be true for the ciphers involved and
the message that is being treated by the reduction. These
requirements are

1) The domain for the reducing cipher must include the
domain of the reduced cipher - The reducing cipher
must contain the same alphabet from which mappings
are made, if not actually be the same alphabet. If there is
no mapping available for the plain text to be made into
cipher text, then some information may not be encrypted.
This means that for the original alphabet ({A}) the
reducing cipher alphabet ({A′}) must have the property
that {A} ⊆ {A′}

2) The range for the reducing cipher must include the range
for the cipher being reduced - The reducing cipher must
contain the same alphabet, or include the alphabet, of
range. If this is not true the two encryptions cannot map
the same way. That is to say, if the original cipher and
key pair map A 7→ B then the second cipher and key
pair must map A 7→ C where ({B} ⊆ {C}). Omission
of a single character in the output alphabet will not allow
for identical mappings in all cases.

3) There must exist a key such that the mappings for the
two ciphers remains the same - For all cases there must
be a key that corresponds to any possible mapping for
the original key.

These conditions apply only to encryptions, and not to modes.
Modes are a special case of randomization functions that are
designed to be both reversible and to allow for mappings that
violate the 1:1 assumption. Therefore, modes, such as Cipher
Block Chaining Mode (CBC) [6], are not encryption functions.

A. XOR Equivalence to S

One of the more common ciphers used as a constituent in
block product ciphers is the XOR cipher. Applied to a block
of b bits, the key for the cipher is also b bits long. Fore each
block Bi in a message composed of n concatenated blocks
M = ||ni=1Bi, encryption follows the formula

CTi = PTi ⊕KXOR (10)

This performs a bitwise XOR for each bit in the block and
the key. The plain text alphabet for the function is the set of
all combinations of 0 and 1 bits contained in a block of size b
bits. The cipher text is composed of the same combinations, as
the bits may change value, but are still in the same set. Thus
{PT} = {CT} = {00...0, 11...1} for collections of bits of
size b. Using the 7→ function, it is possible to map any PT to
CT values, using the constraint that the mapping follows the
applied XOR function with the key. Each bit maps to either a 0,
or 1, which is in the range of the set for the bit. Therefore, all
conditions are met for reduction of the XOR to the S function,
assuming the function is applied on the block level for blocks
of the same size.



B. P Equivalence to S

The P cipher also works on the bit level. In this case the
bits are mapped from one location in a block to another bit
location. For a block of b bits the location in the key set
corresponds to the bit location in the plain text. So, for key
location Ki plain text bit Bi

CTKi
= PTBi (11)

As with the XOR cipher, the plain text alphabet is the set of
all combinations of 0 and 1 bits contained in a block of size
b bits. The cipher text is composed of the same combinations,
as the bits may change value, but are still in the same set.
Thus {PT} = {CT} = {00...0, 11...1} for collections of bits
of size b. Using the 7→ function, it is possible to map any PT
to CT values, using the constraint that the mapping follows
the mapping key for the P cipher. This meets the conditions
for reduction of the P cipher to the S cipher.

C. Feistel Reduction

Consider a round based cipher, such as a Feistel Round
Cipher [6] whose typical structure is shown in Figure 1. A
Feistel Round is actually a part of a product cipher composed
of multiple simple ciphers. A simple Feistel Round is shown
in Figure 2. There are many types of rounds that use various
ciphers, but commonly used ciphers include the XOR, S,
Rotation (P), and may also use S and P networks such as those
used in AES. However, for ease of illustration, this paper will
use one of the type shown in Figure 2.

Fig. 1. Feistel Block Cipher Struc-
ture

Fig. 2. A Typical Round

The number of rounds that are used in block ciphers of
this type can vary from 2 to any desired number. Analysis of
the number of rounds has indicated that at least 8 rounds are
required in order to achieve a good mixing of the bits in the
cipher. More rounds ensure a better mix, and 16 rounds are
generally recommended. However, AES uses 14 rounds [6].

Reducing a round of the type selected in the example begins
with ensuring that all data is being subjected to the same
encryption methods. The round as shown in Figure 2 subjects
half of the data to an XOR and S cipher before applying the
P rotation. Such an “unbalanced” encryption can quickly be
made balanced by applying an XOR with the key of all 0 bits

and an S cipher whose key is the identity key, such that for any
symbol (si) in the block si 7→ si (see Figure 3). Then the two
blocks can be combined in to a combined, single encryption
step.

Fig. 3. A Balanced Round Fig. 4. The Reduced Round

The XOR cipher with block size of n bits is equivalent to
an S cipher of identical size with an equivalent key S1 such
that

EXOR,k1(M) = ES,S1(M) (12)

No reduction needs to be done to the S cipher boxes. This
is already an S cipher with key S2. Half of the key is the
identity key and is already known.

Following the S boxes, the cipher then rotates the two half
blocks, reversing the order of the half blocks. Rotation of this
type is a form of the P cipher with a very simple key. Each
bit is rotated to the right by an offset of

O =
|B|
2

(13)

with mappings from the original bit location of

bnew = (bold +O) % |B| (14)

It has previously been shown that P ciphers reduce to an S
cipher. In this case the key is S3. As a result of the reduction
process, the Feistel Round can now be represented as shown
in Figure 4.

Next, the property of idempotence is applied to the separate
ciphers in the round. By idempotence the three S ciphers can
be reduced from three S ciphers to a single S cipher with an
equivalent key

Se = S1S2S3 (15)

Each round can therefore be replaced by a single S cipher
with key Se,rn, where rn indicates the round number. With
sixteen rounds, idempotence is again applied to the individual
round ciphers.

Se,r = Se,r1...Se,r16 (16)

Substituting this into the round cipher results in a single PSP
product block cipher as shown in Figure 5. At this point, the
P ciphers that feed the equivalent S cipher and also is fed by
the S cipher can be replaced with equivalent S ciphers. After
reduction, the three S ciphers can be reduced into a single S



Fig. 5. Structure of a PSP Type
Round Cipher

Fig. 6. Structure of AES Reduced

cipher by idempotence. As long as the ciphers being reduced
are applied to the same block sizes, reduction is possible on
Feistel round ciphers, including AES and other related ciphers.
This reduction applies only to ciphers and does not apply to
modes or ciphers with modes. AES is a Fiestel Round type
cipher. The structure of AES is shown in Figure 6. Using the
same approach and by applying idempotence, the rounds in
AES also reduce to a single S cipher, so AES is also vulnerable
to this attack.

IV. USING CIPHER REDUCTION

Cipher reduction allows the analysis of complex ciphers,
such as block product ciphers, and gives insight into how to
handle those ciphers. Many popular block ciphers are in the
form of PSP and SPS type ciphers. Combining P and S ciphers
is thought to be much more secure, especially if the P cipher
has bit mappings that cross symbol boundaries. However, are
PSP and related types of ciphers really all that much more
secure than S block ciphers with the same size key?

The answer can be shown in two parts. First, consider the
relative security of a PSP cipher to an S cipher of equivalent
sizes and using the same alphabet. The comparison is made
using the measure of the unicity distance, which indicates how
fast information is allowed to accumulate using both types
of ciphers. Sec is the security ratio between the two types
of ciphers. Both cipher types are assumed to be of the same
block size, consisting of b bits and having an alphabet of |A|
symbols. The derivation of the relationship is

Fig. 7. Epsilon by Block Size

SecPSP,S =
nPSP

nS
(17)

=

log(|KPSP |)
Rλlog|A|
log(|KS |)
Rλlog|A|

(18)

=
log(|KPSP |)
|log(KS |)

(19)

=
log(2b|A|!2b)
log(|A|!)

(20)

=
log(2b) + log(|A|!) + log(2b)

log(|A|!)
(21)

= 1 +
2log(2b)

log(|A|!)
(22)

Let

ε =
2log(2b)

log(|A|!)
(23)

Then
SecPSP,S = 1 + ε (24)

The relationship between |A| and b is such that the number of
bits required, at a minimum, to represent a unique encoding
of the alphabet requires more bits than the number of symbols
in the alphabet when

|A| > 4 (25)

At that point, ε < 1. The larger the size of the block, and
therefore the size of the alphabet, the smaller ε becomes.
Eventually, ε = 0. Figure 7 shows the drop in ε with
increasing block size, in terms of bits. This chart starts with
the minimum encoding for the lower case English alphabet
at 26 characters. Additional block sizes, normalized for 8
bit character encoding, such as found in ASCII encoding, in
powers of 2. By the time that encryption reaches block sizes
of 256 bits, the present size of government required security,
ε = 0.03125, a small additional measure of security.

These figures for ε depend on the maximum size of the
key space and possible alphabet size. If the effective key



space is smaller than the maximum, the value for ε will be
correspondingly smaller. Practically, the curve shown in Figure
7 is actually an upper limit on the value of ε. If the key space
is smaller than is expected, then the value may be smaller. But,
the use of cipher reduction can gives a more accurate view of
the relative security. In the preceding discussion, it was shown
that a PSP type cipher can be replaced with a single S cipher.
Therefore, mathematically the ratio becomes

SecPSP,S =
nKe,S

nS
= 1 (26)

Therefore, there is no difference in security between a block
PSP cipher and a block S cipher of the same block size and
for the same message. Cipher reduction enables an easy way
to compare what appear to be two fundamentally different
ciphers. The strength that comes from block product ciphers
comes primarily from the increased size of the key rather than
the mixing of disparate ciphers.

A second outcome of cipher reduction is applicable in
decryption. For many years security professionals have been
creating decryption algorithms to attack specific encryption
algorithms. Hackers and researchers have speculated that a
single, universal decryption algorithm exists and can be used
to attack all types of encryptions. Using cipher reduction to
reduce the constituent ciphers involved into a single S cipher
of a particular block size allows an attacker to use the proper
language statistics and employ a single decryption algorithm
for a large number of ciphers, including block ciphers. That
algorithm is the attack approach used for a block substitution
cipher. Any algorithm that is effective for block S ciphers will
work for a wide variety of ciphers.

The universal approach will not work when some additions
are made to ciphers. These include:
• Product block ciphers with block boundaries that do not

coincide - Product ciphers do not have to have the same
boundaries for changing keys. Those ciphers which have
key changes at different, but regular, offsets from each
other break up the blocks and make it impossible to match
the block size and accomplish isomorphic reduction.

• Product block ciphers where each cipher has different
block sizes - In a polymorphic environment the block size
of a cipher does not always remain constant. It is quite
possible to encrypt with block ciphers whose block size
is chosen either at random or through a guided security
function to maximize message security. Reducing a cipher
requires that the block size be identical to the original
cipher, making a changing block size difficult, if not
impossible, to predict a priori accurately. Therefore, an
elastic and changing block size frustrates reduction.

• Polymorphic ciphers - Polymorphic, or “mutating” ci-
phers [2] employ evolving and unpredictable changes in
ciphers and block sizes. Changing the key for a submes-
sage means that the attacker must know the boundaries
of each of the shards in the message in order to correctly
reduce the cipher(s). This makes polymorphic ciphers
reduction resistant, if not reduction proof.

• Ciphers with randomization functions - The additions of
randomization alters the composite key of a message and
is designed to make each block in the cipher resistant to
reduction. While this makes the cipher resistant there are
other attacks, such as the collision attack [15], [16], which
are side channel attacks that target the randomization
algorithm to accomplish encryption breaks.

• Modes - Most modes add randomization algorithms to
encryption. Of the eight modes, six employ various
randomization routines to make the encryption look like
it has no patterns and is more random. Electronic Code-
book (ECB) mode uses no randomization and one mode
changes block ciphers into serial ciphers. Cipher reduc-
tion is possible in ECB mode, but is not used in other
modes. See the comments on ciphers with randomization
functions and side channel attacks that are viable in those
situations/modes.

V. CONCLUSION

Feistel said that at their hearts, all ciphers are S ciphers
[11]. This comment, made in the 1970’s, should be interpreted
literally. Using the metacharacter assumption and the property
of idempotence it can easily be shown how to replace (or
reduce) other ciphers to the S cipher. In this paper, we have
shown the path to reduce XOR, P, and block ciphers to the S
cipher and how to treat block product ciphers, such as Feistel
round and AES type ciphers into a single S cipher. Cipher
reduction allows for these ciphers to be attacked as an S cipher
and shows that a universal decryptor is possible based on S
cipher attack methods. We also presented the proof that, with
cipher reduction, that the security that is added by using mixes
of P and S ciphers is negligible.

While cipher reduction is a powerful tool, it is not a
universally useful attack. Cipher reduction does not work well
with certain encryption techniques. Any type of block cipher
that is polymorphic, changes block sizes, and randomly mixes
different keys throughout its application can be made resistant
to cipher reduction. Further, most modes are also immune
because they add a layer of randomization. However, modes
appear to be susceptible to side channel attacks based on their
randomizing layer.

Cipher reduction should be considered when designing en-
cryption algorithms and mixing different encryption methods.
Decryption strategies can also be adjusting by using the same
approach. By understanding how the encryption algorithms
relate to each other and weaken the total security a much
stronger encryption is possible. Cipher reduction is another,
powerful tool for all security providers.
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