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Abstract—Cybersecurity professionals have relied on the key
space of a cipher to compare encryption algorithms and select
the best encryptions for transmitted data. Peer reviewed strong
ciphers have been assumed to maintain strength for all messages.
It is thought that only brute force attacks can break these
ciphers, so the key space calculation for these algorithms uses
the maximum key space to determine the unicity distance.
Unfortunately, the key space is heavily dependent on the user
and habits of the user, as well as the content of the message.
In this paper, we present factors that affect the key space size
and show that the effects of these factors can seriously decrease
the security of a cipher for a particular message. By considering
these factors, a cybersecurity practitioner can properly assess
vulnerability and choose the best security for that message.

Index Terms—Cryptography, Key Spaces, Applied Mathemat-
ics, Cybersecurity

I. INTRODUCTION AND BACKGROUND

One of the most common cybersecurity measures for mes-
sages is encryption. This technique is used to prevent attackers
from reading the sensitive content of messages and keep in-
formation shared between users secure. Normally the strength
of a cipher is measured in terms of the key space of a cipher.
The cipher algorithms is assumed to be known to the attacker
[1], [2] but so strong that the only attack possible is the Brute
Force attack [3]. If this condition is correct then comparisons
between algorithms can be made based on key space size
(|kc|). Assuming it takes a time of tp to present a solution
to a computer and evaluate whether or not the message has
been decrypted, then it takes time tb to recover a message,
where

tb =
|kc|tp
2

(1)

on the average [4]. Therefore, comparisons between the secu-
rity of a cipher is apropos, and the larger the key space the
stronger the security. Cryptographers are aware of this math
and produce ciphers that have scalable key spaces that can
be increased as the value tp drops with increasingly faster
hardware. As the speed of hardware increases, ciphers with

smaller key sizes have been abandoned for those with larger
key sizes due to the increased key space and security related
to the larger key size.

Key spaces are calculated using counting theory [5]. Most
ciphers have key spaces that can be relatively large (|ke| ≥
1020) for even “easy” ciphers. Computers can quickly run
brute force attacks for numbers of this size, so correspondingly
larger key spaces are used. The simplest, least secure cipher
algorithms have key spaces of size of |A|! for Substitution (S)
and 2b for Permutation (P) ciphers.

Product ciphers [6] are made up of different combinations
of S and P ciphers [7]. For example, the product cipher
known as the Advanced Encryption Standard (AES) is made of
combinations of P ciphers, XOR ciphers (a form of S cipher), S
boxes, transposition of rows and columns (a form of P cipher),
and a rotation of data (another form of P cipher) [3]. Multiple
rounds of these ciphers are used to complete the encryption.
In this case the key space is the Cartesian cross product of the
possible keys. The resulting key space is found by multiplying
the key space for each of the ciphers in use to create the
product cipher. The total key space (kt) is calculated by:

|kt| =
n∏
i=1

|kci | (2)

for the n ciphers in the product structure.

Key space size is a key piece of information in calculating
the amount of information that is necessary to recover an
encrypted message. Shannon derived a formula for the amount
of information that accumulates in an encrypted file and how
it relates to the number of characters required, on the average,
to be able to uniquely identify the correct key [2]. This
measure, called the “unicity distance,” arises from the concepts
of “entropy” [8] and “redundancy” [2].

Entropy was first suggested by Hartley [8] and was recog-
nized as an important measure for encryption by Shannon [2].978-1-6654-0690-1/21/$31.00 c©2021 IEEE
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Mathematically, entropy (H(x)) is defined as:

H(x) = −
n∑
i=1

pr(xi)lg(pr(xi)) (3)

H(x) describes the amount of information that is gained from
knowing what the next letter, or group of letters, when they
are revealed. Shannon later made use of entropy in order to
define the effect of redundancy in language.

Carlson noted that, “Shannon [2] then demonstrated that
enough information is contained in n-grams (groups of n
consecutive letters) to effect the solution of a Caesar cipher (a
specialized type of the S cipher). S cipher decryption methods
often use letter frequency tables and n-grams to recover keys.
Morton [9] expanded language statistics to incorporate words
and then sentence structure.” [10]

Further, “Shannon [2], [11] noted that every language con-
tains redundancy. He further established that redundancy can
be quantified as

Rλ = 1− H(x)

Hmax(x)
(4)

and interpreted as the tendency of symbols in a language (λ) to
be repeated. Patterns in the language that are not removed prior
to sending a coded message provide an opportunity for attack
[12]. S ciphers have traditionally been attacked through the
employment of redundancy, expressed statistically by letter,
n-gram, and word frequencies [12]. An n-gram is a group of
n consecutive letters found in a text.

“Shannon also stated that the average amount of information
required to distinguish between spurious keys and the actual
key is determined by

n =
log|K|
Rλlog|A|

(5)

where |K| is the key space size, |A| is the size of the alphabet
in language λ, and Rλ is the redundancy of language λ. The
quantity n is known as the “unicity distance” for the cipher
in language λ” [10].

Unfortunately for a legitimate user of a cipher, all keys are
not always unique [13]. Two cipher keys, k1 and k2, are said to
be “equivalent,” if for a message (M ), Dk1(M) = Dk2(M).
Keys need not be equivalent for all possible messages. For
example, assume the message (M ) does not contain the
symbols q, x, or z in its plaintext and is encrypted using a
S cipher. Any key that contains the same mappings for all
symbols except q, x, or z is equivalent to any message not
including q, x, or z. Without those symbols in the message,
it is impossible to differentiate other possible keys from the
correct key (ke).

Keys are applied to messages and files that are composed
of groups of symbols of n-grams. There are two types of
n-grams: “allowed” and “forbidden” [2], [10]. An n-gram
that does not occur in the use of a particular language by a
particular user, or group of users, is said to be forbidden. An n-
gram that is not forbidden for a user, or group of users, and is
found at least once in a corpus of communications is said to be

allowed. Allowed n-grams are the basis of what are generally
known as “language statistics” that comprise a large corpus of
data used in the attempt to break encrypted messages when the
attacker does not possess the key to the file/message. Lewand
and others [2], [14], [15] showed how language statistics
are employed in breaking intercepted messages. The exact
methods for using these statistics varies from cryptographer
to cryptographer.

Some approaches use statistics in a limited role. For in-
stance, Shannon used the statistics for each n-gram only once
[2]. However, Carlson notes that there are many n-grams
available for analysis [10]. For example, for an n-gram of
size i, applied to a message of size |M |, there are |M |− i+1.
n-grams. The total number of n-grams in the message, for a
range of n-gram sizes from 2 to j, are nmg n-grams. The total
number of n-grams in a message is given by

nmg =

|M |∑
i=2

|M | − i+ 1. (6)

Single letters are not normally considered in n-gram analysis
because there are no forbidden letters in the alphabet. Alpha-
betic characters are more often seen and used in the role of
letter frequency analysis. Larger lengths of n-grams become
difficult to work with because the possible number of n-grams
for a particular n grows exponentially. For a given n in an
alphabet (A), consisting of |A| letters, there are |A|n possible
n-grams. As the size of n increases, the number of forbidden
n-grams also increases (Table I). However, the increase in the
number of forbidden n-grams quickly overcomes the number
of allowed n-grams. The difference is so dramatic that it is
easier and more efficient to store the number of allowed n-
grams and manipulate that data than to store the forbidden
n-grams for use.

TABLE I
n-GRAM NUMBERS FOR ENGLISH

No. No. Total No. %
n Forbidden Allowed n-grams Forbidden
1 0 26 26 0.0000%
2 15 661 676 2.2189%
3 6261 11315 17576 35.6224%
4 347292 109684 456976 75.9979%
5 11251945 629431 11881376 94.7024%
6 306789115 2126661 308915776 99.3116%

Each value for n is a different set of allowed/forbidden
n-grams. The possible number of sets that could be ap-
plied is given by |M | − 1. A difficulty in using sets of
allowed/forbidden n-grams is the possibility of biasing the data
towards a particular author. As stated earlier, all authors have
a “style” [9] that distinguishes one writer from another. An
author’s style, if used as a set to describe general language use,
can inaccurately describe the general use of that language and
cause erroneous results. Empirical results indicate that style



bias becomes a problem for m ≥ 8 [15].
The number of n-grams that can be formed, and need to be

checked, for a string of n letters is given by ln, where l is |A|
and n is the number of symbols in the string. English uses
|A| = 26. As n increases, representing each combination as a
bit results in increasingly larger number of bits. By the time
that n = 6, the total number of bits is 308,915,776 bits, or
slightly over 38 MB. Because of limitations on the amount of
memory available and the effort required to store and retrieve
data from such a large file, n-grams larger than m = 6 were
not considered for use.

Multiple n-grams may reside in a string. For a string of
size x, where x = 6 letters, the number of n-grams available
is given by:

num(n−grams) =

6∑
i=2

x− (i− 1) (7)

Combining the concepts of equivalent keys, H(x), Rλ, and n
is the idea that inside a file/message, there will be portions
of the message where data accumulates very quickly. While
most researchers characterize the average statistics of a set of
messages/files, very little is mentioned about specific cases.
Much like gambling, the average will prevail over time due
to the Law of Large Numbers [5]. However, even though
casinos make a great deal of money on a probability difference
of approximately 4%, there are still winners in the casinos.
These winners exploit runs of probability that are temporarily
in the favor of the gambler. The same happens in messages
and files. Understanding that all ciphers are S ciphers [16]
and that S ciphers allow for patterns to bleed through [17].
This leads to the concept of an entropy, and hence a unicity
distance that is applicable in that portion of the message to
break the patterns found there. Known as “local entropy” and
“local unicity distance” [10], this explains why cryptographers
can exploit patterns found in certain parts of a file/message
and recover information that is still applicable to the entire
file/message.

All of these concepts are central to understanding why
depending on the maximum key space for a cipher does not
adequately nor accurately describe the security of encryption
for all messages. It is necessary to know how instances of
particular messages vary from the average behavior of data
encryption.

II. ISOMORPHIC KEY REDUCTION, ISOMORPHIC SETS,
AND CORPUS CONSTRAINTS

Not all encrypted messages using the same cipher algorithm
are equally secure. One of the more interesting questions in
cryptanalysis is why some messages are cracked while others
remain safe for a much longer period of time. If same cipher is
used for any two messages it would seem that both messages
should be equally secure and be safe for the maximum number
of keys in the key space for that cipher. But this is not
true, different messages may have vastly different security and
susceptibility to decryption. Shannon’s equation for unicity

distance gives clues as to why such a difference in breaking
encrypted files and messages exists.

Consider the equation for n (Eq. 5). That equation has three
variables of interest: the key space of the cipher (|k|), the size
of the alphabet of the language (|A|), and the redundancy of
the language (Rλ). Each of these will be considered in turn.

A. Key Space

The key space of the message typically is given as the
maximum key space for the cipher algorithm. No allowance
is made for possible heuristic reductions in the number of
keys that are examined. For most peer reviewed ciphers it is
assumed that the cipher algorithm belongs to those ciphers for
which the only real attack is a brute force attack. However,
for a large number of ciphers there are attacks that have
been identified that reduce the number of operations that need
to be done in order to break an encryption. These heuristic
attacks range from the use of language statistics [2], [3] on
the S cipher to the Slide and Differential attacks [18] on
round based product ciphers. Security professionals often rely
on the key space measure to select ciphers used to protect
data. However, when they do select encryption algorithms
these analysts will often select the algorithms based on the
maximum key space rather than consider the effect of the
decreased effective key space due to message content for
known attacks. Compounding this error, cybersecurity experts
rarely take the interaction of the message and encryption
algorithms into account when deciding on which cipher or
security measures to use. The content of the message does
affect the choice.

One problem that occurs frequently, especially with smaller
messages and files, is the problem of isomorphic (equivalent)
keys and their effect on the key space [?]. Many times this
situation occurs when not all of the letters in an alphabet
appear in the message/file. Low frequency letters, such as
‘v,’ ‘k,’ ‘x,’ ‘q,’ ‘j,’ or ‘z’ do not appear in many messages.
When they do not appear, then the mapping for those symbols
do not matter in an encryption. If two or more symbols are
not used, then equivalent keys are possible. These keys can
them be grouped into sets of isomorphic keys. Each of these
isomorphic keys can be represented by a single key selected
from the set, known as the “systematic isomorph.” Since each
of the keys will result in the same encryption/decryption, only
one key needs to be checked from each isomorphic key set. If
the key is rejected, then each of the keys in the set can also
be rejected. If the key successfully decrypts the message/file,
then any of the keys in the set will have the same effect.

Identifying isomorphic keys in a message or file depends
on the patterns in the message. This methodology is limited
to encryption algorithms that do not employ randomization
routines, such as those found in encryption modes. Modes,
such as Cipher Block Chaining (CBC), Counter (CTR), Cipher
Feedback (CFB), Output Feedback (OFB), and Propagating
CBC (PCBC) are not directly susceptible to this methodology.
Use of these modes defeats direct analysis of isomorphic key



spaces, but the principle is still applicable to its constituent
encryption algorithms.

Since all ciphers are S ciphers [16], at their base and S
ciphers do not disguise patterns, it is possible to analyze cipher
text and count the number of symbols found in the message.
Using the 1:1 principle for encryption [10], it is simple to
count the number of unique characters to arrive at the number
of alphabetic characters that are used in the message. Using
that data, it is then possible to calculate both the number of
systematic isomorphs, or unique keys, as well as the size of the
isomorphic key sets. In an S cipher the number of systematic
isomorphs in the message is simply the number (T ) of unique
cipher text characters.

In an analogous manner, P cipher key spaces can also be
reduced. This technique is built upon the practice to represent
an alphabet with encodings that are contiguous within a run
of values. For example, in the ASCII encoding, lower case
English letters span the decimal values 97 - 122 (61h - 7Ah).
Upper case letters span a similar run covering 65 - 90 (41h
- 5Ah). If a message is composed of lower case letters, then
all characters in a message will begin with the binary values
“011.” Since the P cipher retains all of the original ‘0’ and
‘1’ bits in the message, the bits that do not change that are
known as “static bits” can easily be identified.

Assume that the P cipher used allows mapping bits to any
of the bits in the block, even those outside the byte in which
the bits originate. Further, for ease of illustration, assume the
block is 3 bytes. Now, define a function

⋂̂
that operates on

two bits in the same location in different blocks (a and b) such
that

r =
⋂̂

(a, b) =

{
ba,i if ba,i = bb,i

x otherwise
(8)

where x is the symbol x and indicates a difference between the
bits. Once a bit location is identified as changing (not static,
ie. dynamic) then the bit permanently retains that designation.
On the average, if data is random, there is a probability of each
bit changing between blocks of data of pr(ba,i 6= bb,i) ≈ 1

2 .
Therefore, if blocks are sequentially compared using

⋂̂
, in

approximately lg(|B|) block comparisons between unique
blocks, the bits that do not change will be identified because
they have not changed. This application of the

⋂̂
function can

stop when the number of bits that are not designated by the
entry ‘x’ is equal to the number of known static bits (|St|)
[10]. That is |St| = |B| − |x|; where |B| is the number of
bits in the block and |x| is the number of bits in the block
known to be dynamic using this algorithm. Each of these
static bits reduce the number of unique mappings for bits and
comprise isomorphic keys. Therefore, for a P cipher applied
to a message (M ) there are

(|B| − |St|)!
(
|St|
C

)
(9)

unique keys, where C = min(|0′s|, |1′s|) [10].
Calculating the number of isomorphs in an isomorphic

key sets uses the information collected while determining the

number of systematic isomorphs. Again, the values depend
on the type of cipher. For an S cipher applied to a message
(M ), there are ke = (|A| − |T |)! systematic isomorphic keys
[10]. Let T be the set composed of each unique xi ∈M . The
partial key T 7→ A′ contains all of the information required
to decrypt M . Any key containing the partial key T 7→ A′

will correctly decrypt M . The number of symbols that do not
appear in the message is given by |A| − |T |. Selecting each
of the unused symbols and counting the number of mappings
for each symbol gives (|A| − |T |)! possibilities.

For a P cipher applied to a message (M ), there are

ke =

|B|!−
(
|St|
C

)
(|B| − |St|)!(

|St|
C

)
(|B| − St)!

(10)

keys in the set of keys for each systematic isomorph.
So long as the cardinality of the set of systematic isomorphs

is greater than 1, ie.|ke| > 1. then the resulting key space is
smaller than the maximum key space by the factor (fe) = 1

|ke| .
and the security is similarly reduced. A graph of the drop

off of the key space versus the number of characters not seen
in the message for an S cipher for single letters is shown in
Fig. 1. This figure is a log based graph on the Table II. The
effect is a log drop as fewer characters are seen. Key space
reduction of this type scale with with the size of the block.

B. The Alphabet Size

Alphabets are the collections of the basic symbols that
are combined to make words in a language. Each character
is required and constitutes a minimal set of characters for
a particular language. However, when working with blocks
of characters in a language the statistics for the new block
language are not a simple scaling up of the original alphabet.

Consider the differences between English when the symbols
of the language are taken one at a time versus when the
language is broken into blocks of two characters at a time.
Shannon called these combinations of blocks of the original
language “n-grams” where the number substituted for n indi-
cated the size of the block in terms of the number of symbols
from the original alphabet. An n-gram is a consecutive run
on n alphabetic symbols from the text that have spaces and
punctuation removed. Shannon used the statistics associated
with each of these n-grams as important language statistics in
breaking ciphers [2]. The probability of a particular n-gram
appearing in text varies from 0 ≤ pr(n-gram) ≤ 1. If the
decryption of a particular set of symbols or block is an n-
gram has a pr(n − gram) = 0 then the proposed decryption
key is wrong and is abandoned [2]. Further, Shannon separated
n-grams into two groups: those which appear in language use
(pr(n − gram) > 0) and those that never appear in the
syntax of a language (pr(n−gram) = 0). Those that appear
are said to be “allowed” n-grams and those that never appear
are said to be “forbidden.” Shannon also indicated that once
a forbidden n-gram is encountered, any other larger n-gram
built upon, or containing the forbidden n-gram will also be



a forbidden n-gram. Therefore, the percentage of allowed n-
grams falls as the size of the block (n) increases. This effect
occurs very quickly. Carlson’s empirical study of n-gram size
showed that by the time n = 6 the number of allowed n-grams
fell to approximately 0.6114% of the possible combinations
of letters in English [10]. In fact, the number of forbidden n-
grams exceeded the number of allowed n-grams when n = 4.

Carlson, in his dissertation, suggested that when a block
of characters is used in encryption that the combination of
characters in the block be considered as a “metacharacter”
in a “metalanguage” based on the same underlying natural
language. The alphabet for the metalanguage is made up only
of the allowed n-grams of size n = |block| in the base
language. While the size of the alphabet falls greatly, the key
space size also falls precipitously. Since all ciphers considered
in the paper are S type cipher at heart, their key space is
governed by the size of the alphabet. For an S cipher the
key space is calculated by |K| = |A|!. A reduction in the
alphabet size by even a single metacharacter only reduces the
size of the metaalphabet by 1, but reduces the key space by
A. As an example, consider English as the base language for
a metalanguage of size n = 3. The total number of possible
combinations of three symbols is |Kmax| = 263 = 17576.
The empirical studies conducted by Carlson showed that only
11,315 3-grams (64.377%) were found in a collection of over
200,000,000 n-grams in the corpus of English texts spanning
multiple genre from the 1500s to the present time [10].

Although Carlson focused on an alphabet consisting only of
lower case letters in a language, other symbols can be consid-
ered to be part of the alphabet. Adding spaces, punctuation,
numbers, and upper case letters is a valid way to increase the
alphabet size. Allowed metacharacters (n-grams) are still a
much smaller set than the total “possible” set if the forbidden
n-grams are added into that set. All languages have a syntax
that restrict the number of allowed n-grams, since there are
patterns in language that bleed through encryption.

The main result is that the key space is based on the
actual alphabet size, rather than the maximum size of character
combinations for discrete letters. Key space is greatly reduced,
as shown in Table III. Therefore, a brute force attack based
on the allowed letters/metacharacters in the language can be
prosecuted much more quickly than previously thought.

C. Language Redundancy

The third variable in the unicity distance equation is the
redundancy of the language (Rλ). Most cryptographers, when
evaluating the unicity distance, use the standard values calcu-
lated for a natural language. For example, the accepted value
for the redundancy of English was calculated by Shannon [11]
to be REnglish ≈ .75. This measure is related to the average
data for the language. However, each individual actually uses
a language differently from other users. Langendoen and
Postal, in their work on the Theory of the Vastness of Natural
Languages [19] indicate that each person has their own unique
language (λi) that intersects with other personal languages
and results in a mutually understood natural language, such

TABLE II
KEY SPACE VS UNSEEN CHARACTERS

|A| Unseen |K|
26 0 4.03291E+26
26 1 4.03291E+26
26 2 2.01646E+26
26 3 6.72152E+25
26 4 1.68038E+25
26 5 3.36076E+24
26 6 5.60127E+23
26 7 8.00181E+22
26 8 1.00023E+22
26 9 1.11136E+21
26 10 1.11136E+20
26 11 1.01033E+19
26 12 8.41942E+17
26 13 6.47648E+16
26 14 4.62605E+15
26 15 3.08404E+14
26 16 1.92752E+13
26 17 1.13384E+12
26 18 62990928000
26 19 3315312000
26 20 165765600
26 21 7893600
26 22 358800
26 23 15600
26 24 650
26 25 26
26 26 1

Fig. 1. Key Space vs. Unseen Characters



TABLE III
EFFECTIVE KEY SPACE FOR S CIPHERS COMPARING MAXIMUM

ALPHABET TO ALLOWED ALPHABET

Allowed Max Key Actual Key
N AN AN Space Space
1 26 26 26! 26!
2 676 661 676! 661!
3 17576 11315 17576! 11315!
4 456976 109684 456976! 109684!
5 11881376 629431 11881376! 629431!
6 308915776 2126661 308915776! 2126661!

as English. They indicate that there are a transfinite number
of human natural languages |λ| = ℵ0. This indicates that each
person has a unique H(x), Rλ, and n distance. Some users
will naturally have more security related to their messages due
to the habits that they routinely use in communication. Some
will also have increased security related to the lexicon and how
that lexicon is used in speaking or writing. Unicity distance is
directly related to redundancy and redundancy as a measure of
stylometry [9]. In general, different communicators (speakers
or authors) will have a different probability density function
(pdf) for a language. Each language (λi) must be considered
separately when selecting an encryption for a message.

The individual habits of a user will also be reflected in
shorter portions of a message or file. The “local” environment
of a portion of the message or file will also have susceptibility
to attacks. That susceptibility depends directly on the habits
and stylometry of the individual user. Any data that is gained
from work in a local portion of the message and file becomes
side information that can be applied throughout the entire
message or file, changing the local entropy and unicity distance
for the remainder of the message.

III. EFFECT OF REDUCTION AND ISOMORPHIC KEYS ON
DATA SECURITY

In the previous section of this paper, it has been shown
that key space, the use of the alphabet in a language, and the
style of a user all mathematically bound the effective unicity
distance for an encrypted message or file. This brings up two
questions: how do these named factors affect cybersecurity and
the security of any particular message and is it possible to draw
conclusions about the nature and practice of cryptography?
The answer to the first question about the use of language by
an individual user in a message clearly impacts the key space,
and hence the security, of the message. Both the habits of the
user and the content of the message can radically vary the
key space from the mathematical bounding imposed by the
maximum key space of the encryption algorithm employed by
the system. Therefore, the message should be evaluated prior
to the selection of the encryption for any message. The answer
to the second message is an an unequivocal yes, it is possible
to generalize and draw conclusions about how the message
affects security.

The first lesson that should be drawn from this data is that
the key space quoted for a cipher should be seen as a maximum
bound. So, for a message (M ), the key space is dependent on
the characters seen in the message. Let KM,c represent the
key space for the message using cipher (c) and Kc represent
the maximum key space for a cipher (c). Then |KM,c| ≤ |Kc|.
The unicity distance for a message is

nM,c =
log(|KM,c|)
Rλlog(|A|)

. (11)

And by extension

nM,c ≤ nc =
log(|K|)
Rλlog(|A|)

. (12)

Assessing how much of a difference that there is between
the actual key space and unicity distance can vary greatly. At
times the difference is so great that messages and files are
susceptible to being recovered by attackers with much less
effort that the sender realizes. Instead of relying solely on
the key space as a measure of security the determination of
how secure a message is when encrypted depends on both the
cipher algorithm used for encryption and the exact content
of the individual message or file. In turn, the content of the
message depends on the habits of the user and indirectly on
the subject matter and the way it is presented. Security and
the measures taken should depend on the individual message.

The approach taken in evaluating the key space and related
variables in the calculation of the unicity distance explains
a number of observed phenomena in encryption. It explains
why, even with the same cipher, some messages will be easier
to crack than other messages. It has been assumed that the
same cipher means the same level of protection. It does not.
A smaller key space and less characters in an alphabet result in
a shorter, sometimes critically so, unicity distance. Brute force
attacks will also be easier for some messages than they will
be for other messages using the same cipher for encryption.
Rainbow tables may even be possible for attacking even what
are thought of as the most secure and strong ciphers. It all
depends on the content of the message or file that is being
encrypted.

Personal habits and stylometry also affect the unicity dis-
tance of an encrypted message. Examples of personal language
habits are the use of articles and repeated phrases in texts.
Morton identified more than 30 such habits in his text on
the subject [9]. Stylometry issues can also reduce the key
space and the number of alphabetic characters that appear in
a message. Security always depends on the user, the message,
and the cipher.

Ciphers encrypting large blocks of data will increase the
security of a message, but they are also susceptible to the
same problems as a cipher encrypting a single character
at a time. By viewing the block as a metacharacter in a
metalanguage, analysis can be scaled for use to these block
ciphers. Therefore, block ciphers must also be applied to
messages in light of the content of the messages.



IV. CONCLUSION

In this paper it has been shown that the use of the maximum
key space calculation, when used as a measure of security,
has been misunderstood and misapplied. Shannon’s equations
relating to the security of encrypted files and messages clearly
shows that a “one size fits all” analysis of key space is incor-
rect. Key spaces are often much smaller than the maximum
and smaller than assumed. The sources of variation from the
maximum can come from, as a minimum, the following:

1) Isomorphic (equivalent) keys,
2) Smaller size of the alphabet due to forbidden n-grams,
3) The use of metacharacter analysis of a block encrypted

message,
4) Local entropy, redundancy, and unicity distance in a

message,
5) The effects of syntax and the semantic content of a

message, and
6) The effects of user(s) stylometry in the actual content

of the message or file.
Each of these sources of reduced entropy add up to reduced

security. A user cannot take the maximum size of key space,
and therefore the maximum security, for granted. When choos-
ing the method of transferring files, encryption algorithm,
and security measures for communications the cybersecurity
professional must take into account the content of the message.
Using the maximum key space in selecting a cipher and
applying security scheme should never be used as a shortcut
for setting the level of security and taking the proper security
measures.

As the key space is a message which are often smaller
than assumed, sometimes very small, messages should be
evaluated before being sent. It may even be possible to use this
assessment to select the best cipher and security measures for a
transmitted message or file. When cybersecurity professionals
understand the variation in file security they can then take a
more informed set of measures to properly protect the data
they release onto networks for transmission.

This paper has given guidelines for properly evaluating the
security of an encrypted message. In particular, the role played
by message content has been highlighted, along with language
usage in communications. Examples were also provided to
demonstrate the concepts presented, including how seemingly
large key spaces are really much smaller than typically quoted.
As a result, the cybersecurity expert must consider, and adjust
for, message content in order to properly assess message
security and select the proper measures to maximize message
safety.
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