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Abstract—Increasing the performance of a Generative Adver-
sarial Network (GAN) requires experimentation in choosing the
suitable training hyper-parameters of learning rate and batch
size. There is no consensus on learning rates or batch sizes
in GANs, which makes it a “trial-and-error” process to get
acceptable output. Researchers have differing views regarding
the effect of batch sizes on run time. This paper investigates
the impact of these training parameters of GANs with respect
to actual elapsed training time. In our initial experiments, we
study the effects of batch sizes, learning rates, loss function, and
optimization algorithm on training using the MNIST dataset over
30,000 epochs. The simplicity of the MNIST dataset allows for
a starting point in initial studies to understand if the parameter
changes have any significant impact on the training times. The
goal is to analyze and understand the results of varying loss
functions, batch sizes, optimizer algorithms, and learning rates
on GANs and address the key issue of batch size and learning
rate selection.

Index Terms—Generative Adversarial Networks, Training,
Hyper-parameter, Neural Networks, Artificial Intelligence

I. INTRODUCTION

Generative Adversarial Networks (GANs) were introduced
by Ian Goodfellow [1] in 2014 and operate as shown in Fig. 1
[2]. GANs use a Generator Network (G) and a Discriminator
Network (D) as seen in Fig. 1 to produce new samples of
previously unseen data. G is trained to produce samples from
an input noise vector and the result of the process is presented
to D. A singular value is produced by D which the circuit
attempts to determine whether the input data is from a real set
of data or from the data produced by G. The output of D is
then used as feedback to train G further to attempt to fool D
into thinking that the synthetic input from G is instead from
a real dataset.

D is commonly trained using the Stochastic Gradient De-
scent (SGD) [3] optimizer or the Adam optimizer [4] to
minimize the loss function; however, a different optimizer
might be used for alternative training scenarios. The process of
training requires a great deal of data. Processing large amounts
of data together can be resource and time consuming. To
make this process easier, data is divided into smaller chunks
known as batches. Batches enable the network to more easily
perform calculations as the number of data points are reduced,
controlling the stability of the training of a neural network as
well.

Fig. 1. Generative Adversarial Network Architecture. [2]

Batch size, or Mini Batch Size, is a static hyper-parameter
that is selected by the user. However, there is no agreement on
the batch size that would be most effective for the training that
is to be undertaken. Small batches are assumed to converge
faster and require fewer epochs [5], [6], while large batch sizes
are considered better for scaling up a network [7]–[9]. To train
a GAN, choosing the correct batch size is necessary to assist
in training D, which is fundamentally a Convolutional Neural
Network (CNN), and to help convergence of the GAN. Since
training GANs can be time consuming, adjusting batch sizes
to find the size that best suits the timing and accuracy can be
challenging.

This paper attempts to address the confusion about the batch
sizes. There are many hyper-parameters at play, but batch size
remains the most dominant factor [10]. Batch sizes dictate the
frequency of updates to the parameters within the network and
controls the number of predictions made at any time. The paper
explores the actual training times of a GAN with differing
loss functions by training over the Mixed National Institute
of Standards and Technology (MNIST) dataset [11] using a
range of batch sizes. Testing procedures also explore whether
or not changing the loss function plays a role in altering the
training times.

II. RELATED WORK

GANs have a G, trained using the output of D, based on
a mapping of random noise from latent space, and produces



synthetic data that D tries to distinguish as either real or fake
data. GANs use the loss function, as seen in Eq. 1, that G
wants to minimize and D wants to maximize, trying to find a
Nash Equilibrium [12]. The equilibrium is where the optimal
outcome is achieved when no network has an incentive to
change its own strategy based on the strategy of the adversary
[13], while playing a Mini-Max Game. The loss function that
GANs use is:

minGmaxDV (D,G) = Ex∼pdata(x)
[logD(x)]

+Ex∼pz(z)[log(1−D(G(z)))]
(1)

where x is a sample from the real dataset distribution pdata(x),
z is sampled from a latent space distribution pz(z) and
D(G(z)) is the output probability of D on the image generated
by G [1]. GANs have gained success primarily in the fields
of image generation and synthesis [9], [14]. GANs have also
been applied by other researchers to address issues in the field
of Natural Language Processing [15] and Security [16].

Neural Network (NN) training is a two step process where
the goal is to minimize the cost function. The inputs are
first fed into the input layer of the NN and the variables are
computed in the intermediate layers, also known as hidden
layers, completing the first step of training. This step is called
the forward pass. The output generated from the last layer
is then compared with the desired output to obtain error in
gradient, which is calculated from the comparison, and, based
on this comparison, weight updates are updated in each layer
to minimize the error in decision making for the output. This
is the second training step, known as the backward pass. The
robustness of a network is determined by its ability to update
its weights to minimize the error of the generated output. The
two step training process is shown in Fig. 2 [2]. Two important
terms that pertain to training a NN are epoch and batches.
One epoch is when the NN completes training over a whole
dataset. The chunks over which data is divided before training
are known as batches.

Fig. 2. Neural Network Training Process. [2]

Significant research opportunities relate to modifications to
the training process. Researchers continue to search for ways
to either increase convergence by changing the loss functions
[17]–[19] or add Auto Encoders to increase stability of GANs.

Studies have been done on batches using Normalization [10],
[20], and Batch Equalization [21] for convergence of the
training process; however, very few tests have been applied
to the batch size selection for GAN training, thereby making
it difficult to draw conclusions about the optimal selection of
batch size. Batch size studies have been conducted on CNN’s
[22]; however, the impact of batch sizes on GANs have not
been reviewed extensively. It has been shown that the effects
of gradient noise on the network will impact the training times
as well [6].

III. RESEARCH GOALS

The primary aim of this paper is to understand the effect
that batch sizes have on training the D with respect to elapsed
training time. Along with batch sizes, the learning rate is
also varied to measure the interaction effect that this will
have with batch sizes to the changes in training time. We
also seek to understand the interactions from varying the loss
function and optimizer algorithm of the GAN will have with
the change in batch sizes. In the initial experiments, with
30, 000 epochs on the MNIST dataset and a range of batch
sizes, we investigate trends that researchers expect and what
affects changing learning rates, optimizer algorithms and loss
functions have on GAN training times.

IV. DATASET

The initial study primarily employs the MNIST dataset
[11], which is a commonly used and trusted dataset in NN
research [23]. The database has a collection of 60, 000 training
examples and 10, 000 testing examples of 10 patterns of
handwritten digit images ranging from “0” to “9” along with
the labels for each image. The 10, 000 test images in the
dataset are used to test the accuracy of the model. Each gray-
scale image has a pixel size of 28× 28 pixels containing the
handwritten digit as shown in Fig.3 [11].

Fig. 3. MNIST Dataset with 60,000 training images and 10,000 testing
images.



TABLE I
GAN TIMINGS IN SECONDS WITH DIFFERENT BATCH SIZES

8 16 32 50 64 100 128 150 200 250 256 512 1024
GAN LR=0.01 with SGD 504.52 496.04 502.71 552.84 560.57 654.36 669.22 722.34 832.77 913.66 921.72 1401.99 2446.2
GAN LR=0.001 with SGD 478.69 475.98 483.77 530.97 537.35 615.93 643.30 698.74 806.31 895.70 886.50 1335.35 2271.98
GAN LR=0.0002 with Adam 610.76 597.13 604.81 667.62 677.27 774.01 779.54 855.20 963.34 1045.05 1054.05 1559.56 2662.36
GAN LR=0.00002 with Adam 619.16 597.95 600.39 641.57 660.10 754.21 765.70 836.78 941.02 1010.38 1015.78 1457.11 2520.13
wGAN LR=0.002 with RMSProp 859.40 842.64 876.54 941.37 971.18 1129.28 1198.75 1283.95 1488.27 1600.02 1604.52 2373.59 3919.33
wGAN LR=0.00005 with RMSProp 664.31 664.53 698.10 769.19 806.71 977.02 1047.65 1128.48 1296.38 1423.58 1440.14 2222.85 3740.96

Fig. 4. Comparative training times by batch sizes, learning rates and loss functions.

V. ARCHITECTURE

The batches chosen in our experiments have sizes that
are powers of two (2n) and multiples of ten (10n) based
on the work of Radiuk [22], with a total of 13 batches.
The experiments were run on two architectures of GANs
with different loss functions and optimization algorithms to
understand the effects of the loss function on training time
using 30, 000 epochs on a GeForce GTX 1080 Ti GPU. Keras
[24] was used to complete the training, extending the code
provided by [25].

A. GANs

As stated in Section II, GANs consist of a G and a D,
where the aim of the G is to maximize the probability of the
D incorrectly identifying the real image from a fake image.
The G samples noise from the latent space and is converted to
an image using the feedback from the D. D is a CNN, which is
trained to classify fake or real images between a set of images
made by G and a real dataset of images. In the experiment, a
two layer D is used on varying batch sizes, first with the SGD
optimizer and then with the Adam optimizer using different
loss functions and learning rates.

B. Wasserstein GAN

The Wasserstein GAN [17], or wGAN, was developed by
M. Arjovsky in 2017. wGAN uses a loss function called the
Wasserstein-1 or the Earth-Mover (EM) distance to find the
optimum path between two probability distribution functions
[2], [17], which are shown in Eq. 2:

W (pr, pg) = inf
γ∈Π(pr,pg)

E(x,y)∼γ [||x− y||] (2)

where Π(pr, pg) is the set of joint distributions γ(x, y) with
marginals pr and pg . γ(x, y) is the amount of “mass” to be
transported from x to y to change the distribution pr to pg .

The Wasserstein loss function has exhibited good stability
in areas dealing well with lower dimension data distribution
where Jenson-Shanon divergence, used in the vanilla GAN,
has failed. The D in this GAN methodology turns into a critic,
which scores an image with a probability value of whether
it thinks the image is real or fake. The wGAN also uses a
different optimizer called the Root Mean Square Propagation
(RMSProp) optimizer, explained below in Section V-D.



C. Stochastic Gradient Descent

Gradient Descent [26], is an optimization algorithm that
has been used successfully in Deep Learning applications. It
uses an iterative method to measure the degree of change of
a variable and outputs the lowest possible value of a convex
cost function; however, it uses the whole set of data as one
batch before updating weights of the NN. At the other extreme,
SGD, the workings of which are shown in Fig. 5, addresses
this issue by updating weights every iteration with a batch size
of one [27].

Fig. 5. Stochastic Gradient Descent.

D. RMSProp

The optimizer used by the wGAN is known as the RMSProp
(that is, Root Mean Square Propagation), which is an ex-
tension of the rprop algorithm,developed by Geoffery Hinton
[28]. The rprop algorithm uses a full batch for optimization
to adaptively decay or speed the learning rate based on the
sign of the gradient descent. This means that if a sample has
the same sign on the two previous gradient updates, it speeds
up the learning, since the same signs show that the learning
is taking place in the right direction. Otherwise, it causes a
decay in the learning rate because different signs in successive
values would indicate that a step too large has taken place in
the wrong direction. An issue with the rporp algorithm is that
it is very time consuming when used on larger datasets. The
RMSprop solves this issue by maintaining the moving average
of the squared gradient of the current weights and dividing it
by the square root of the mean square. This makes it possible
to make learning rate adjustments on smaller batches of data
[3], [29].

E. Adam

The Adam optimizer is a gradient-based optimizer that can
be used interchangeably with SGD for updating the network
weights iteratively [30]. The name Adam is imitative of the
term adaptive moment estimation. Inspired by the Adaptive
Gradient Algorithm (ADAGRAD), which maintains a learning
rate for each parameter, and the RMSProp. As discussed in

Section V-D, the Adam optimizer uses a flexible estimation
of the “lower order moments” by calculating the exponential
moving average of the gradient with the squared gradient and
separate parameters, which control the decay rates [3], [30].
Note, however, that Adam is very different from the SGD,
as the SGD maintains the same learning rate for each weight
update [3].

F. Learning Rate

The Learning Rate, or LR, is a hyper-parameter that controls
the change of the model, which is in response to weight
updates based on the error of the output. It defines the rate
of adaptation of a model to a problem. LR is very important
as it can determine whether weight updates become “stuck”
due to small rates of change, or become too fast and unstable
due to high LRs. Specifically, it is the speed at which the SGD
oscillates, in order to determine the lowest possible cost value,
as shown in Fig. 5. The rate is often a very small positive value
in the range of 0.0 and 1.0 [3].

VI. EXPERIMENTAL RESULTS AND ANALYSIS

The initial experiments trained GANs using the SGD op-
timizer with learning rates of 0.01 and 0.001. Next, the
Adam optimizer was run with a learning rate of 0.0002 and
0.00002. The loss function was then changed to characterize
its effects on training by using wGAN with the RMSProp
optimizer method and learning rates of 0.00005 and 0.002.
All experiments were done on the MNIST dataset [11] with
30, 000 epochs. The results are shown in Table I.

Fig. 4 summarizes the initial results of the total time taken
in testing the GANs. Based on the curves and the raw batch
testing information, a dip was observed in run times, ranging
from batch size 16 to 32. It is interesting to note that all other
time values are in agreement and directly proportional to the
batch size. The dip was present in every run of the test data
and was consistent for that range of batch sizes. This motivates
the question as to what might contribute to this sudden, short
dip in training times for these values? The remainder of the
curve is monotonically rising in all cases. Such a dip might
be the result of two or more operations or effects that trend in
different directions during training. One dominates the timing
early in the training, but falls off as batch size increases,
while the other has little effect early in training, but quickly
dominates the training as batch size increases. If this is correct,
what are the relevant factors, and what roles do they play in
training?

A further question is, could this mean that there is a batch
size selection that is optimal for GAN training? This question
is central to future work in predicting optimal training batch
sizes. The trend of timing over different GAN variants with
different batch sizes are similar where training time increases
with increased batch sizes.

As shown in Table I, decreasing the LR of the GAN with
the SGD optimizer from 0.01 to 0.001 allows the network
to converge comparatively faster. The trend of time with the
decreased LR follows a similar pattern to the increased LR



Fig. 6. Time vs Batch Sizes on GAN using SGD optimizer.

with increasing batch sizes, as shown in Fig. 6. We observe
a dip in training time at batch size 256, which leads to the
question as to whether a combination of batch size and/or
learning rate selection has an impact to the training time (in
this case). With the Adam optimizer, we observed that the
starting time is high for both of the initial LRs at the first
batch size. We subsequently observed a dip at batch size 16
for both LRs, which suggests that the Adam optimizer tries
to update the learning rate in order to make the process more
efficient. It is interesting to note, however, that for batch size
16, the time to converge is within a few milliseconds of the
previous higher learning rate. This would suggest that the
batch size selection plays a significant role. Convergence time
increases, as shown in Fig. 7, along with the observed trend in
previous experiments. For wGAN, which uses a Wasserstein
loss function, the time taken to converge with a smaller LR
is faster. We see in Table I that the time taken for batch size
16 is less than that for batch size 8 for the first instance,
while the time is very close for the next; this follows the
general trend. Thus the conclusion that batch size selection,
with varying loss function, along with the smaller learning
rates, helps the process to converge by reaching the lowest
possible value of the cost function much faster within 30, 000
epochs. The batch size selection, along with these parameters,
play a very important role as well. It is also interesting to note
that the highest change in time function is between the two
LRs in the wGAN; however, this had the highest change in
LR.

Future work should focus on the dip in training times with
respect to LRs. The training time is expected to follow the
same trend of monotonic increase with batch size; however, it
does not. Observe from Fig. 6 that the time taken for the 16
batch size decreases for two different learning rates. The times
at batch size 256 also decreases slightly, which also raises an
important question about how convergence is reached more
quickly with a slower learning rate.

In Fig. 7, a batch size of 16 with the Adam optimizer tends
towards a faster convergence; however, the same trend is not
present in the 256 batch size. The next test shown in Fig. 8,
with a very slow LR, the wGAN with RMSProp has a very
small increase in time, on the order of milliseconds, with 16

Fig. 7. Time vs Batch Sizes on GAN using Adam optimizer.

Fig. 8. Time vs Batch Sizes on wGAN using RMSProp optimizer.

batch sizes. This decrease in training time is similar to the
subsequent training results, once the LR is increased to 0.002.

The aforementioned results suggest that batch size, learning
rate, optimizer algorithm, and loss functions have an impact
on training time. Training times are not exponential with the
changes in batch size. Therefore, we cannot make a conclusive
statement about the supposition that an increase in batch sizes
would increase training time. Further, there are reductions in
the training time at batch sizes of 16 - 32. Another small
reduction in the some training time curve comes at about a
batch size of 256.

VII. CONCLUSION AND FUTURE RESEARCH

Batch sizes and other hyper-parameters have a measurable
impact on training a GAN. The optimal desired batch size is
still a source of deliberation, with researchers on both ends
of the batch size debate arguing their points. In this study, we
investigated the effect of batch size, learning rate, optimization
algorithm and loss functions on the MNIST data set. We
performed our initial experiments on three different GANs.
The initial tests were done over 30, 000 epochs. The results
indicate that training times decrease almost consistently over
batch size 16 from batch size 8 with changing LRs, opti-
mizers and loss functions, for which training times continue
to increase gradually. We also observed sudden decreases in
training times, which suggests that there is an optimal batch
size that can effect the “best” results from the GAN. Our



results are indicative that the optimal batch size can impact
training time and convergence. The initial study results have
shown good potential for an adaptive batch size that can be
used as a solution to minimize training time.

This research demonstrates the impact of batch sizes and
learning rate on training times. The initial assumption, as with
other previous studies, was that the training time increases
with increases in batch sizes; however, there is a decrease in
training time with an increase in several batch sizes. In future
work, we shall investigate further why there is a dip in training
time, as opposed to popular and widely held assumptions about
training times. It is important to understand the reasons as
to why such dips occur, and then seek to predict the causes
of the reduction in training time. Additionally, we intend to
incorporate testing accuracy, in order to determine whether
there are any changes in accuracy as well. Using another loss
function might give differing results, with a different dataset.
The effect of hardware could also play a role in the training
time. Extending the testing to multi-GPU systems may show
how training time changes with the increase in GPU size.
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