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Abstract—A recent study [1] and our experimental results
show that a Neural Network(NN) often learns the most important
features early during training. This results in accuracy during
training to follow similar curves in each case. The magnitude of
weight updates are the highest during the early iterations and
weight updates stabilize with continued training of the NN. In this
paper, we examine the training curve of a neural network with
respect to an Iteration Weight value of τ . Using τ , we can predict
the approximate maximum accuracy and the required number
of training examples to reach that specific accuracy level. The
model resembles the well understood Resistance-Capacitor(RC)
Charging Circuit and appears to act accordingly. Our motivation
stems from the fact that predicting the number of training
iterations for a model to reach a desired level of accuracy has not
been attained. As such, our work should be useful for researchers
in their efforts to improve their training designs.

Index Terms—Neural Networks, Training, Electromagnetism,
Prediction

I. INTRODUCTION

Considerable research has been done in attempting to un-
derstand the performance of Neural Network (NN) training
[2]–[4]. Initially, the NN undergoes the maximum change in
accuracy with respect to a small number of training exam-
ples. The greatest impact and the highest gradient change to
accuracy occurs in the early training iterations. As one drills
deeper into the training process, the accuracy tends to oscillate
at later stages as the weights are fine-tuned; however, the curve
widely retains the same general trend of the curve.

With an increasing number of training examples, there
appears to be a change in the magnitude of accuracy, which
gradually decreases and reaches an asymptotic accuracy line.
Figure 1 illustrates the evaluation accuracy of a ResNet-
20 architecture [1] with respect to the number of training
iterations. The shape of the curve is characteristic of NN
training. We have observed the same curve in our training
research. Moreover, we observe further that the same curve
occurs for the RC Charging Circuit curve, as shown in Fig. 4.

To the best of our knowledge, mathematically modelling
the accuracy with respect to the training progression of a NN
has not been done. We draw from the concepts of electromag-
netism and RC Charging as motivation to address this issue.
We seek to predict an approximate maximum accuracy that
can be achieved by the NN, as well as the number of training

Fig. 1. Training vs Accuracy

iterations required for a NN training, based on initial training
values, in order to reach a desired level of accuracy. Further,
we are guided by the principles and concepts of abstract
algebra [5] and topology [6], which tell us that we can apply
the same solution to problems with the same mathematical
description [7]. We will use the RC Charging Circuit equation
to model the training graph, as the NN training graph is
mathematically observed as similar to the RC Charging Circuit
graph shown in Fig. 4, as follows:
• Mathematically model the training of a NN.
• Predict the maximum achievable accuracy of NN training

based on the RC Charging Circuit.
• Predict the number of iterations required to reach the

maximum predicted accuracy.

II. BACKGROUND

A. Neural Networks

Neural Networks (NNs) [8] can be defined as a structure that
contains an input layer and an output layer, with computations
taking place in the output layer, which is also referred to
as a perceptron or a single layer neural network. Similar to



the operations of a biological brain, the input layer transmits
data that it receives as input to the output layer for the
computations to take place and an output is presented. Often,
intermediate layers are placed in the network as additional
computation resources and are generally abstracted from the
user. These layers are known as hidden layers. When a network
contains more than a single computational layer, it is known
as a multilayer neural network. NNs consist of a network of
neurons in multiple layers (e.g. fully-connected, convolutional,
pooling, etc.), whereby each layer has an associated set of
weights that are applied on features of the input to transform
them into a desired results for the subsequent layers [9], [10].

B. Neural Networks Training

For multilayer NN training, optimal weights are calculated
for the features by a method known as backpropagation. NNs
have a predefined loss function, or an objective function, that it
tries to minimize to increase the training accuracy, which will
increase the overall accuracy of the NN. The gradient update
to the loss function is calculated by backpropagation, which
has two main phases: the forward pass and the backward pass,
as shown in Fig. 2.
• A forward pass takes place when an input is fed to the

NN input layer followed by a cascade of computations
across the next layers with current weights, and an output
is generated by the output layer. This output is then
compared with training values and the weight updates
are computed based on the derivative of the loss function
with respect to the output.

• A backward pass is conducted after the calculation of
the gradient of the loss function. Once the gradients are
calculated, the values are sent to each layer where the
weights associated with each neuron are updated. Since
updates are conducted in the opposite direction, it is
called a backward pass [10].

Fig. 2. Training in a Neural Network

Next, we define several terms that are related to training.
When a NN completes training over the whole data set, it
is known as one epoch. Networks are not generally trained
over a whole dataset, instead datasets are divided into smaller
instances or batches before the training is performed. Batch
size is the number of batches over which the data are divided.

The number of batches that must be iterated, in order to
complete one epoch is known as an iteration. For example,
if we have 500 training instances and we create a batch size
of 10 batches, we would have to complete 50 iterations to
complete one epoch [11].

As previously mentioned, the magnitude of weight changes
due to backpropagation is highest during the first few iterations
of training. The magnitude of change slowly decreases over
a period of time and the network finally stabilizes. This
phenomenon is illustrated in Fig. 1, where we see a sharp
rise initially in training accuracy from the high magnitude of
weight updates and the gradual stabilizing in later iteration
phases [1]. We shall later discuss the concept of Resistance
and Capacitance Charging, which is used to model our training
prediction.

C. Resistance and Capacitance Charging Circuit

A Resistance and Capacitance Circuit (RC circuit) contains
a voltage source ε, a resistor R and a capacitor C, which
stores an electric charge in a circuit. The circuit shown in Fig.
3 allows the capacitor to be charged.

Fig. 3. Charging of a Capacitor in a RC Circuit

We use Eq. 1 in order to understand the voltage difference
between the capacitors. The equation is as follows:

VC(t) = ε(1− e− t
τ ) (1)

where ε is the highest voltage, t is the time and τ = RC,
which is known as the time constant. The graph of charging
over time can be seen in Fig. 4 [12].

III. PROPOSED MODEL

From Fig. 1 and Fig. 4, we can observe the similarity of the
graphs. The goal is to find the relationship between the time
constant τ and the number of training iterations required.

A. Value of τ

The value of τ is a characteristic of the shape of the curve.
1τ is estimated at the point where the accuracy reaches the
value of 63.2% [12]. At the value of 1τ , it becomes possible
to accurately estimate the remainder of the curve. We will
designate τ as the Iteration Weight of the curve. The accuracy
increase for each τ changes on the curve. τ represents a



Fig. 4. Voltage difference across Capacitor

reduction of 63.2% at the maximum accuracy achievable given
the characteristics of the problem. Once we have reached
63.2%, we can choose the correct maximum curve. There
exists an infinite number of accuracy curves between 0% and
100% accuracy. For simplicity, we will consider the family
of curves in 5% maximum increments, although any number
of curves could be considered. At the point represented by
63.2% accuracy, the curves are sufficiently separated to make
it possible to identify the maximum accuracy for the problem.

B. Predicting Maximum Accuracy

We will use Eq. 1 to establish a mathematical model to
predict maximum accuracy of a NN training based on the
trend at τ . Using the equation, we will select from the range
of curves to establish the maximum accuracy. The maximum
achievable accuracy should be 100%; however, given the curve
type, it is theoretically impossible to reach 100% accuracy.
Thus, we are searching for the asymptotic upper limit for
accuracy, or the ceiling function denoted by dAe, where A
is the accuracy. The minimum accuracy we seek is 65%.
Although, potentially any value could be reached.

Using the following form of Eq. 1:

t = − ln (1− At
Amax

) (2)

where t is a fraction of the training iteration τ , At is the
accuracy at training iteration t, and Amax is the maximum
accuracy of the graph. We compute which of the family of
graphs is the correct maximum with a maximum accuracy
range of 65% to 100% at intervals of 5%, as seen in Fig. 5.
The solution for t in the Eq. 2 represents the training iteration
for the accuracy point with respect to the differing maximum
accuracy. We will use these curves as a reference in order to
approximate the maximum possible accuracy for the training
curve that we want to predict. We will also use these curves to
understand the training iteration for any desired accuracy level.
If we look at the derivative with respect to accuracy as per
Table I, we can move to the graph which it fits approximately,
based on the derivative of that point on the curve.

In order to find the maximum possible accuracy for a graph
under consideration, we consider the accuracy point of 63.2%
for the graph. We will calculate the average rate of change for

Fig. 5. Graphs for different accuracy range

TABLE I
MAXIMUM ACCURACY WITH CORRESPONDING SLOPE AT τ

Maximum Accuracy Derivative at Tau
65% 0.03233
70% 0.0839
75% 0.134
80% 0.1845
85% 0.2346
90% 0.2846
95% 0.3347
100% 0.3847

the graph at that point using Eq. 3. To find the derivative of
f at the point x = a we use:

f ′(a) = lim
x→a

f(x)− f(a)
x− a

(3)

We calculate the derivative of the function of the curve at
f ′(0.632) which gives the rate of instantaneous change from
δy
δx . Using the graph in Fig. 1 as an example, the approximate
best secant value of which is 0.2 at τ . The derivatives of the
reference graphs were calculated at the same percentages, as
shown in Table I.

Next, comparing the derivatives of the reference graph and
the example research graph at τ , we estimate the maximum
possible accuracy for the graph. The result lies between the
80% and 85% maximum accuracy curves. From Table I, the
derivative value at the 80% accuracy curve is 0.1845 and the
derivative value at the 85% accuracy curve is 0.2346. The
calculated derivative of the example was 0.2, which is closer
to the derivative value for the 80% accuracy curve. Therefore,
the selected maximum curve is between 80% and 85%. For
purposes of calculation we use the fitted floor function of 80%
maximum value.

C. Predicting the Curve

After determining the approximate maximum possible accu-
racy, we use Eq. 2 with the τ value to estimate the number of
required training examples to reach that maximum. Selecting
the desired final accuracy, matching that value of τ with the
desired accuracy, and plugging those values into the equation,
results in the estimate for the number of training examples
required. Noting that this is just an approximation, the user
can multiply the number of examples by an appropriate factor.



Overlaying the study example in Fig. 1 with our predicted
curve with maximum accuracy of 80%, the maximum variation
from the actual curve is bounded at 10%, as seen in Fig.
6. Generally speaking, this is in excellent agreement for the
curve, as the asymptotic accuracy is very close to 80%, as
predicted. This was applied to several examples and similar
levels of accuracy were achieved, an example of which is
shown in Fig. 7.

Fig. 6. Predicted Accuracy vs Ground Truth

Fig. 7. Predicted Accuracy vs Ground Truth

IV. ANALYSIS OF RESULTS

Training is a continuous process that is never “completed.”
In Fig. 2, there are oscillations and noise in the accuracy,
which means there could be unsatisfactory training examples.
Smoothing the curve shows the actual trend of learning, given
the training set in the architecture, the architecture of the NN,
and the nature of the problem itself. It is unclear at this time
what the contribution of each of these factors is with respect
to accuracy. The goal is to verify our model. Our aim is to
check our model by stopping the training at a point where
the accuracy has reached 63.2%. We find that the accuracy
prediction at this point in training can be an early indicator of
the maximum possible accuracy.

To increase accuracy, a modified or deeper architecture
might be required. More complex architectures, for exam-
ple, variant models of Generative Adversarial Networks [13]
might demonstrate significant accuracy increase. Changing the
dataset may also affect the accuracy; however, the measure of

change remains an open issue for research. This leads us to
the conclusion that better examples should be used early in
the training process. Is it possible to decrease the number of
training examples based on quality? Can the quality of an
example be measured by accuracy if that example is applied
as the initial training examples? The exact mechanisms that
cause oscillation and noise in accuracy should also be studied.
Finally, it is important to know how early in the training
process can prediction be made accurately.

V. CONCLUSION

Based on our model, we can anticipate the highest possible
accuracy and the number of training examples needed for a
NN to attain a desired level of accuracy. We do this based on
the RC Charging Equation, or more precisely, on the value of
τ . Researchers will need to train their NNs initially for several
training iterations, in order to reach the accuracy value of τ
before we can make our estimations. In our experimental work,
we use NNs to check our model; our experimental results were
encouraging and appear accurate.
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