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 Abstract 

This Recommendation specifies mechanisms for the generation of random bits using 
deterministic methods. The methods provided are based on either hash functions or block 
cipher algorithms.  
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Random Number Generation Using 
Deterministic Random Bit Generators 

 

1 Introduction 

This Recommendation specifies techniques for the generation of random bits that may then be 
used directly or converted to random numbers when random values are required by 
applications using cryptography.  

There are two fundamentally different strategies for generating random bits. One strategy is to 
produce bits non-deterministically, where every bit of output is based on a physical process 
that is unpredictable; this class of random bit generators (RBGs) is commonly known as non-
deterministic random bit generators (NRBGs)1. The other strategy is to compute bits 
deterministically using an algorithm; this class of RBGs is known as Deterministic Random 
Bit Generators (DRBGs)2.  

A DRBG is based on a DRBG mechanism as specified in this Recommendation and 
includes a source of randomness. A DRBG mechanism uses an algorithm (i.e., a DRBG 
algorithm) that produces a sequence of bits from an initial value that is determined by a 
seed that is determined from the input from the randomness source. Once the seed is 
provided and the initial value is determined, the DRBG is said to be instantiated and may be 
used to produce output. Because of the deterministic nature of the process, a DRBG is said 
to produce pseudorandom bits, rather than random bits. The seed used to instantiate the 
DRBG must contain sufficient entropy to provide an assurance of randomness. If the seed is 
kept secret, and the algorithm is well designed, the bits output by the DRBG will be 
unpredictable, up to the instantiated security strength of the DRBG.  

The security provided by an RBG that uses a DRBG mechanism is a system 
implementation issue; both the DRBG mechanism and its randomness source must be 
considered when determining whether the RBG is appropriate for use by consuming 
applications. 

2 Conformance Testing 

Conformance testing for implementations of this Recommendation will be conducted 
within the framework of the Cryptographic Module Validation Program (CMVP) and the 
Cryptographic Algorithm Validation Program (CAVP). The requirements of this 
Recommendation are indicated by the word “shall.” Some of these requirements may be 
out-of-scope for CMVP or CAVP validation testing, and thus are the responsibility of 

                                                 
1 NRBGs have also been called True Random Number (or Bit) Generators or Hardware Random Number 
Generators. 
2 DRBGS have also been called Pseudorandom Number (or Bit) Generators. 
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entities using, implementing, installing or configuring applications that incorporate this 
Recommendation.  

3 Scope 

This Recommendation includes: 

1. Requirements for the use of DRBG mechanisms, 

2. Specifications for DRBG mechanisms that use hash functions and block ciphers, 

3. Implementation issues, and 

4. Assurance considerations. 

This Recommendation specifies several DRBG mechanisms, all of which provided 
acceptable security when this Recommendation was published. However, in the event that 
new attacks are found on a particular class of DRBG mechanisms, a diversity of approved 
mechanisms will allow a timely transition to a different class of DRBG mechanism.     

Random number generation does not require interoperability between two entities, e.g., 
communicating entities may use different DRBG mechanisms without affecting their ability 
to communicate. Therefore, an entity may choose a single, appropriate DRBG mechanism 
for their consuming applications; see Annex C for a discussion of DRBG mechanism 
selection. 

The precise structure, design and development of a random bit generator is outside the 
scope of this document. 

NIST Special Publication (SP) 800-90B SP 800-90B provides guidance on designing and 
validating entropy sources. SP 800-90C  SP 800-90C provides guidance on the construction 
of an RBG from a randomness source and an approved DRBG mechanism from this 
document (i.e., SP 800-90A).  
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4 Terms and Definitions 

Algorithm A clearly specified mathematical process for computation; a 
set of rules that, if followed, will give a prescribed result. 

Approved FIPS-approved, NIST-Recommended and/or validated by the 
Cryptographic Algorithm Validation Program (CAVP).  

Approved entropy source An entropy source that has been validated as conforming to 
SP 800-90B. 

Backtracking Resistance An RBG provides backtracking resistance relative to time T if 
it provides assurance that an adversary that has knowledge of 
the state of the RBG at some time(s) subsequent to time T (but 
incapable of performing work that matches the claimed 
security strength of the RBG) would be unable to distinguish 
between observations of ideal random bitstrings and 
(previously unseen) bitstrings that are output by the RBG at or 
prior to time T. In particular, an RBG whose design allows the 
adversary to "backtrack" from the initially-compromised RBG 
state(s) to obtain knowledge of prior RBG states and the 
corresponding outputs (including the RBG state and output at 
time T) would not provide backtracking resistance relative to 
time T. (Contrast with prediction resistance.) 

Biased A value that is chosen from a sample space is said to be biased 
if one value is more likely to be chosen than another value. 
Contrast with unbiased.  

Bitstring A bitstring is an ordered sequence of 0’s and 1’s. The leftmost 
bit is the most significant bit of the string and is the newest bit 
generated. The rightmost bit is the least significant bit of the 
string. 

Bitwise Exclusive-Or An operation on two bitstrings of equal length that combines 
corresponding bits of each bitstring using an exclusive-or 
operation.  

Block Cipher A symmetric-key cryptographic algorithm that transforms one 
block of information at a time using a cryptographic key. For 
a block-cipher algorithm, the length of the input block is the 
same as the length of the output block. 

Consuming Application The application (including middleware) that uses random 
numbers or bits obtained from an approved random bit 
generator. 



NIST SP 800-90A, Rev. 1  November 2014 

4  

 

Cryptographic Key (Key) A parameter that determines the operation of a cryptographic 
function such as: 

1. The transformation from plaintext to ciphertext and 
vice versa, 

2. The generation of keying material, 
3. A digital signature computation or verification.  

Deterministic Algorithm An algorithm that, given the same inputs, always produces the 
same outputs. 

Deterministic Random 
Bit Generator (DRBG) 

An RBG that includes a DRBG mechanism and (at least 
initially) has access to a randomness source. The DRBG 
produces a sequence of bits from a secret initial value called a 
seed, along with other possible inputs. A DRBG is often 
called a Pseudorandom Number (or Bit) Generator.  

DRBG Mechanism The portion of an RBG that includes the functions necessary 
to instantiate and uninstantiate the RBG, generate 
pseudorandom bits, (optionally) reseed the RBG and test the 
health of the the DRBG mechanism.  

DRBG Mechanism 
Boundary 

A conceptual boundary that is used to explain the operations 
of a DRBG mechanism and its interaction with and relation to 
other processes. (See min-entropy.) 

Entropy A measure of the disorder, randomness or variability in a 
closed system. Min-entropy is the measure used in this 
Recommendation. 

Entropy Input An input bitstring that provides an assessed minimum amount 
of unpredictability for a DRBG mechanism. (See min-
entropy.) 

Entropy Source A combination of a noise source (e.g., thermal noise or hard 
drive seek times), health tests, and an optional conditioning 
component. The Entropy Source produces random bitstrings 
to be used by an RBG. 

Equivalent Process Two processes are equivalent if, when the same values are 
input to each process, the same output is produced. 

Exclusive-or A mathematical operation; the symbol ⊕, defined as:  
0 ⊕ 0 = 0                        1 ⊕ 0 = 1 
0 ⊕ 1 = 1                        1 ⊕ 1 = 0 

Equivalent to binary addition without carry. 
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Fresh Entropy A bitstring output from a randomness source for which there 
is a negligible probability that it has been previously output by 
the source and a negligible probability that the bitstring has 
been previously used by the DRBG. 

Full Entropy For the purposes of this Recommendation, an n-bit string is 
said to have full entropy if that bitstring is estimated to contain 
at least (1−ε)n bits of entropy, where 0 ≤ ε ≤ 2-64. A source of 
full-entropy bitstrings serves as a practical approximation to a 
source of ideal random bitstrings of the same length (see ideal 
random sequence). 

Hash Function A (mathematical) function that maps values from a large 
(possibly very large) domain into a smaller range. The 
function satisfies the following properties: 

1. (One-way) It is computationally infeasible to find any 
input that maps to any pre-specified output; 

2. (Collision free) It is computationally infeasible to find 
any two distinct inputs that map to the same output.  

Health Testing Testing within an implementation immediately prior to or 
during normal operation to determine that the implementation 
continues to perform as implemented and as validated 

Ideal Random Bitstring See Ideal Random Sequence. 

Ideal Random Sequence Each bit of an ideal random sequence is unpredictable and 
unbiased, with a value that is independent of the values of the 
other bits in the sequence. Prior to the observation of the 
sequence, the value of each bit is equally likely to be 0 or 1, 
and the probability that a particular bit will have a particular 
value is unaffected by knowledge of the values of any or all of 
the other bits. An ideal random sequence of n bits contains n 
bits of entropy. 

Implementation An implementation of an RBG is a cryptographic device or 
portion of a cryptographic device that is the physical 
embodiment of the RBG design, for example, some code 
running on a computing platform.  

Implementation Testing 
for Validation 

Testing by an independent and accredited party to ensure that 
an implemention of this Recommendation conforms to the 
specifications of this Recommendation. 

Instantiation of an RBG An instantiation of an RBG is a specific, logically 
independent, initialized RBG.  One instantiation is 
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distinguished from another by a “handle” (e.g., an identifying 
number).   

Internal State The collection of stored information about a DRBG 
instantiation. This can include both secret and non-secret 
information. 

Key See Cryptographic Key. 

Min-entropy The min-entropy (in bits) of a random variable X is the largest 
value m having the property that each observation of X 
provides at least m bits of information (i.e., the min-entropy of 
X is the greatest lower bound for the information content of 
potential observations of X). The min-entropy of a random 
variable is a lower bound on its entropy. The precise 
formulation for min-entropy is −(log2 max pi) for a discrete 
distribution having probabilities p1,…, pn. Min-entropy is 
often used as a worst-case measure of the unpredictability of a 
random variable. Also see SP 800-90B. 

Non-Deterministic 
Random Bit Generator 
(Non-deterministic RBG) 
(NRBG) 

An RBG that always has access to an entropy source and 
(when working properly) produces output bitstrings that have 
full entropy.  Often called a True Random Number (or Bit) 
Generator.  (Contrast with a deterministic random bit 
generator (DRBG)). 

Nonce A time-varying value that has at most a negligible chance of 
repeating, e.g., a random value that is generated anew for each 
use, a timestamp, a sequence number, or some combination of 
these. 

Personalization String An optional string of bits that is combined with a secret 
entropy input and (possibly) a nonce to produce a seed. 

Prediction Resistance An RBG provides prediction resistance relative to time T if it 
provides assurance that an adversary with knowledge of the 
state of the RBG at some time(s) prior to T (but incapable of 
performing work that matches the claimed security strength of 
the RBG) would be unable to distinguish between 
observations of ideal random bitstrings and (previously 
unseen) bitstrings output by the RBG at or subsequent to time 
T. In particular, an RBG whose design allows the adversary to 
step forward from the initially compromised RBG state(s) to 
obtain knowledge of subsequent RBG states and the 
corresponding outputs (including the RBG state and output at 
time T) would not provide prediction resistance relative to 
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time T. (Contrast with backtracking resistance.) 

Pseudorandom A process (or data produced by a process) is said to be 
pseudorandom when the outcome is deterministic, yet also 
effectively random, as long as the internal action of the 
process is hidden from observation.  For cryptographic 
purposes, “effectively” means “within the limits of the 
intended cryptographic strength.”   

Pseudorandom Number 
Generator 

See Deterministic Random Bit Generator. 

Random Number For the purposes of this Recommendation, a value in a set that 
has an equal probability of being selected from the total 
population of possibilities and, hence, is unpredictable.  A 
random number is an instance of an unbiased random variable, 
that is, the output produced by a uniformly distributed random 
process. 

Random Bit Generator 
(RBG) 

A device or algorithm that outputs a sequence of binary bits 
that appears to be statistically independent and unbiased. An 
RBG is either a DRBG or an NRBG.  

Randomness Source A component of a DRBG that outputs bitstrings that is used as 
entropy input by a DRBG mechanism. 

Reseed To acquire additional bits that will affect the internal state of 
the DRBG mechanism.  

Secure Channel A path for transferring data between two entities or 
components that ensures confidentiality, integrity and replay 
protection, as well as mutual authentication between the 
entities or components. The secure channel may be provided 
using approved cryptographic, physical or procedural 
methods, or a combination thereof. 

Security Strength A number associated with the amount of work (that is, the 
number of operations of some sort) that is required to break a 
cryptographic algorithm or system in some way. In this 
Recommendation, the security strength is specified in bits and 
is a specific value from the set {112, 128, 192, 256}. If the 
security strength associated with an algorithm or system is S 
bits, then it is expected that (roughly) 2S basic operations are 
required to break it. 

Seed Noun : A string of bits that is used as input to a DRBG 
mechanism. The seed will determine a portion of the internal 
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state of the DRBG, and its entropy must be sufficient to 
support the security strength of the DRBG.  
Verb : To acquire bits with sufficient entropy for the desired 
security strength. These bits will be used as input to a DRBG 
mechanism to determine a portion of the initial internal state. 
Also see reseed. 

Seedlife The length of the seed period. 

Seed Period The period of time between instantiating or reseeding a DRBG 
with one seed and reseeding that DRBG with another seed. 

Sequence An ordered set of quantities. 

Shall Used to indicate a requirement of this Recommendation. 

Should Used to indicate a highly desirable feature for a DRBG 
mechanism that is not necessarily required by this 
Recommendation. 

Source of Randomness See Randomness Source. 

String See Bitstring. 

Unbiased A value that is chosen from a sample space is said to be 
unbiased if all potential values have the same probability of 
being chosen. Contrast with biased. 

Unpredictable In the context of random bit generation, an output bit is 
unpredictable if an adversary has only a negligible advantage 
(that is, essentially not much better than chance) in predicting 
it correctly. 

Working State A subset of the internal state that is used by a DRBG 
mechanism to produce pseudorandom bits at a given point in 
time. The working state (and thus, the internal state) is 
updated to the next state prior to producing another string of 
pseudorandom bits. 
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5 Symbols and Abbreviated Terms 

The following abbreviations are used in this Recommendation: 

Abbreviation Meaning 
AES Advanced Encryption Standard, as specified in FIPS197. 
DRBG Deterministic Random Bit Generator. 
FIPS Federal Information Processing Standard. 
HMAC Keyed-Hash Message Authentication Code, as specified in FIP198. 
NIST National Institute of Standards and Technology 
NRBG Non-deterministic Random Bit Generator. 
RBG Random Bit Generator. 
SP NIST Special Publication 
TDEA Triple Data Encryption Algorithm, as specified in SP800-67. 
 

The following symbols are used in this Recommendation: 

Symbol Meaning 

+ Addition 

X ⊕ Y Bitwise exclusive-or (also bitwise addition modulo 2) of two bitstrings 
X and Y of the same length.  

X || Y Concatenation of two strings X and Y. X and Y are either both bitstrings, 
or both byte strings.  

leftmost (V, a) Selects the leftmost a bits of V, i.e., the most significant a bits of V. 

len (a) The length in bits of string a. 

min(a, b) The minimum of a and b. 

x mod n The unique remainder r (where 0 ≤ r ≤ n-1) when integer x is divided 
by n. For example, 23 mod 7 = 2. 

rightmost (V, a) Selects the rightmost a bits of V; i.e., the least significant a bits of V. 
 

 
Used in a figure to illustrate a "switch" between input sources. 

{a1, ...ai} The internal state of the DRBG at a point in time. The types and 
number of the ai depends on the specific DRBG mechanism. 
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Symbol Meaning 

0xab Hexadecimal notation that is used to define a byte (i.e., 8 bits) of 
information, where a and b each specify 4 bits of  information and have 
values from the range {0, 1, 2,…F}. For example, 0xc6 is used to 
represent 11000110, where c is 1100, and 6 is 0110. 

0x A string of x zero bits. 

 

6 Document Organization 

This Recommendation is organized as follows: 

 Section 7 provides a functional model for a DRBG that uses a DRBG mechanism 
and discusses the major components of the DRBG mechanim.  

 Section 8 provides concepts and general requirements for the implementation and 
use of a DRBG mechanism.  

 Section 9 specifies the functions of a DRBG mechanism that are introduced in 
Section 8. These functions use the DRBG algorithms specified in Section 10. 

 Section 10 specifies approved DRBG algorithms. Algorithms have been specified 
that are based on the hash functions specified in FIPS 180, and the block cipher 
algorithms specified in FIPS197 and SP 800-67 (AES and TDEA, respectively).     

 Section 11 addresses assurance issues for DRBG mechanisms, including 
documentation requirements, implementation validation and health testing. 

This Recommendation also includes the following appendices: 

 Appendix A provides conversion routines. 

 Appendix B provides example pseudocode for each DRBG mechanism. Examples 
of the values computed for the DRBGs using each approved cryptographic 
algorithm and key size are available at 
http://csrc.nist.gov/groups/ST/toolkit/examples.html under the entries for SP 800-
90A. 

 Appendix C provides a discussion on DRBG mechanism selection. 

 Appendix D provides references. 

 Appendix E provides a list of modifications to SP 800-90A since it was first 
published. 

http://csrc.nist.gov/groups/ST/toolkit/examples.html
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7 Functional Model of a DRBG 

Figure 1 provides a functional model of a DRBG (i.e., one type of RBG). A DRBG shall 
implement an approved DRBG mechanism from SP 800-90A and at least one approved 
randomness source, and may include additional optional sources, including sources for 
nonces, personalization strings, and additional input. The components of this model are 
discussed in the following subsections.  DRBG constructions are also discussed in SP 
800-90C. 

7.1 Entropy Input 

Entropy input is provided to a DRBG mechanism for the seed (see Section 8.6) using a 
randomness source. The entropy input and the seed shall be kept secret. The secrecy of this 
information provides the basis for the security of the DRBG. At a minimum, the 
randomness source shall provide the amount of entropy requested by the DRBG 
mechanism. Appropriate randomness sources are discussed in Section 8.6.5. 

Ideally, the entropy input would have full entropy; however, the DRBG mechanisms have 
been specified so that input with full entropy is not required. This is accommodated by 
allowing the length of the entropy input to be longer than the required entropy (expressed in 
bits), as long as the total entropy meets the requirements of the DRBG mechanism. The 
entropy input can be defined to be of variable length (within specified limits), as well as 
fixed length. In all cases, the DRBG mechanism expects that when entropy input is 

 

Figure 1: DRBG Functional Model 
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requested, the returned bitstring will contain at least the requested amount of entropy. 
Additional entropy beyond the amount requested is not required, but is desirable.  

7.2 Other Inputs 

Other information may be obtained by a DRBG mechanism as input. This information may 
or may not be required to be kept secret by a consuming application; however, the security 
of the DRBG itself does not rely on the secrecy of this information. The information should 
be checked for validity when possible; for example, if time is used as an input, the format 
and reasonableness of the time could be checked. In most cases, a nonce is required during 
instantiation (see Sections 8.6.1 and 8.6.7). When required, the nonce is combined with the 
entropy input to create the initial DRBG seed.  

A personalization string should be used during DRBG instantiation; when used, the 
personalization string is combined with the entropy input bits and possibly a nonce to create 
the initial DRBG seed. The personalization string should be unique for all instantiations of 
the same DRBG mechanism type (e.g., all instantiations of HMAC_DRBG). See Section 
8.7.1 for additional discussion on personalization strings. 

Additional input may also be provided during reseeding and when pseudorandom bits are 
requested. See Section 8.7.2 for a discussion of this input. 

7.3 The Internal State 

The internal state is the memory of the DRBG and consists of all of the parameters, 
variables and other stored values that the DRBG mechanism uses or acts upon. The internal 
state contains both administrative data (e.g., the security strength) and data that is acted 
upon and/or modified during the generation of pseudorandom bits (i.e., the working state).  

7.4 The DRBG Mechanism Functions 

The DRBG mechanism functions handle the DRBG’s internal state. The DRBG 
mechanisms in this Recommendation have five separate functions: 

1. The instantiate function acquires entropy input and may combine it with a nonce 
and a personalization string to create a seed from which the initial internal state is 
created. 

2. The generate function generates pseudorandom bits upon request, using the current 
internal state and possibly additional input; a new internal state for the next request 
is also generated. 

3. The reseed function acquires new entropy input and combines it with the current 
internal state and any additional input that is provided to create a new seed and a 
new internal state. 

4. The uninstantiate function zeroizes (i.e., erases) the internal state. 
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5. The health test function determines that the DRBG mechanism continues to function 
correctly. 
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8. DRBG Mechanism Concepts and General Requirements 

8.1 DRBG Mechanism Functions  

A DRBG mechanism requires instantiate, uninstantiate, generate, and health testing 
functions. A DRBG mechanism includes an optional reseed function. A DRBG shall be 
instantiated prior to the generation of output by the DRBG. These functions are specified 
in Section 9. 

8.2 DRBG Instantiations 

A DRBG may be used to obtain 
pseudorandom bits for different 
purposes (e.g., DSA private keys 
and AES keys) and may be 
separately instantiated for each 
purpose, thus effectively creating 
two DRBGs.  

A DRBG is instantiated using a seed 
and may be reseeded; when 
reseeded, the seed shall be different 
than the seed used for instantiation. 
Each seed defines a seed period for 
the DRBG instantiation; an 
instantiation consists of one or more 
seed periods that begin when a new 
seed is acquired and end when the next seed is obtained or the DRBG is no longer used 
(see Figure 2).  

8.3 Internal States 

During instantiation, an initial internal state is derived from the seed. The internal state for 
an instantiation includes: 

1. The working state: 

a. One or more values that are derived from the seed and become part of the 
internal state; these values shall remain secret, and 

b. A count of the number of requests produced since the instantiation was seeded 
or reseeded. 

2. Administrative information (e.g., security strength and prediction resistance flag). 

The internal state shall be protected at least as well as the intended use of the 
pseudorandom output bits requested by the consuming application. A DRBG mechanism 
implementation may be designed to handle multiple instantiations. Each DRBG 

 
Figure 2: DRBG Instantiation 
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instantiation shall have its own internal state. The internal state for one DRBG 
instantiation shall not be used as the internal state for a different instantiation. 

8.4 Security Strengths Supported by an Instantiation 

The DRBG mechanisms specified in this Recommendation support four security strengths: 
112, 128, 192 or 256 bits. The security strength for the instantiation is requested during 
DRBG instantiation, and the instantiate function obtains the appropriate amount of entropy 
for the requested security strength. Each DRBG mechanism has restrictions on the security 
strength it can support, based on its design (see Section 10).  

The actual security strength supported by a given instantiation depends on the DRBG 
implementation and on the amount of entropy provided to the instantiate function. Note 
that the security strength actually supported by a particular instantiation could be less than 
the maximum security strength possible for that DRBG implementation (see Table 1). For 
example, a DRBG that is designed to support a maximum security strength of 256 bits 
could, instead, be instantiated to support only a 128-bit security strength if the additional 
security provided by the 256-bit security strength is not required (i.e., by requesting only 
128 bits of entropy during instantiation, rather than 256 bits of entropy). 
Table 1: Possible Instantiated Security Strengths 

Maximum Designed 
Security Strength 

112 128 192 256 

Possible Instantiated 
Security Strengths 

112 112, 128 112, 128, 192 112, 128, 192, 
256 

 

Following instantiation, a request can be made to the generate function for pseudorandom 
bits (see Section 9.3). The pseudorandom bits returned from a DRBG shall not be used for 
any application that requires a higher security strength than the DRBG is instantiated to 
support. The security strength provided in these returned bits is the minimum of the 
security strength supported by the DRBG and the length of the bit string returned, i.e.: 

Security_strength_of_output = min(output_length, DRBG_security_strength). 

A concatenation of bit strings resulting from multiple calls to a DRBG will not provide a 
security strength for the concatenated string that is greater than the instantiated security 
strength of the DRBG. For example, two 128-bit output strings requested from a DRBG 
that supports a128-bit security strength cannot be concatenated to form a 256-bit string 
with a security strength of 256 bits. A more complete discussion of this issue is provided in 
SP 800-90C. 

For each generate request, the security strength to be provided for the bits is requested. 
Any security strength can be requested during a call to the generate function, up to the 
security strength of the instantiation, e.g., an instantiation could be instantiated at the 128-
bit security strength, but a request for pseudorandom bits could indicate that a lesser 
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security strength is actually required for the bits to be generated. Assuming that the request 
is valid, the requested number of bits is returned.  

When an instantiation is used for multiple purposes, the minimum entropy requirement for 
each purpose must be considered. The DRBG needs to be instantiated for the highest 
security strength required. For example, if one purpose requires a security strength of 112 
bits, and another purpose requires a security strength of 256 bits, then the DRBG needs to 
be instantiated to support the 256-bit security strength. 

8.5 DRBG Mechanism Boundaries 

As a convenience, this Recommendation uses the notion of a “DRBG mechanism 
boundary” to explain the operations of a DRBG mechanism and its interaction with and 
relation to other processes; a DRBG mechanism boundary contains all DRBG mechanism 
functions and internal states required for a DRBG. Data enters a DRBG mechanism 
boundary via the DRBG’s public interfaces, which are made available to consuming 
applications.  

The DRBG mechanism boundary should not be confused with a cryptographic 
module boundary, as specified in FIPS 140; the relationship between a cryptographic 
module boundary and a DRBG boundary is mentioned below, but is more fully 
discussed in SP 800-90C. 
Within a DRBG mechanism boundary,  

1. The DRBG internal state and the operation of the DRBG mechanism functions 
shall only be affected according to the DRBG mechanism specification.  

2. The DRBG internal state shall exist solely within the DRBG mechanism boundary. 
The internal state shall not be accessible by non-DRBG functions or other 
instantiations of that or other DRBGs. 

3. Information about secret parts of the DRBG internal state and intermediate values 
in computations involving these secret parts shall not affect any information that 
leaves the DRBG mechanism boundary, except as specified for the DRBG 
pseudorandom bit outputs.  

Each DRBG mechanism includes one or more cryptographic primitives (i.e., a hash 
function or block-cipher algortihm). Other applications may use the same cryptographic 
primitive, but the DRBG’s internal state and the DRBG mechanism functions shall not be 
affected by these other applications. For example, a DRBG mechanism may use the same 
hash-function code as a digital-signature application. 

A DRBG mechanism’s functions may be contained within a single device, or may be 
distributed across multiple devices (see Figures 3 and 4). Figure 3 depicts a DRBG for 
which all functions are contained within the same device. As further discussed in SP 800-
90C, the DRBG mechanism boundary is contained within a cryptographic module 
boundary. 
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 Figure 4 provides an example of DRBG 
mechanism functions that are distributed 
across multiple devices. In this case, each 
device has a DRBG mechanism sub-
boundary that contains the DRBG 
mechanism functions implemented on that 
device, and the DRBG mechanism sub-
boundary is contained within a 
cryptographic module boundary, as is 
further discussed in SP 800-90C. The 
boundary around the entire DRBG 
mechanism includes the aggregation of sub-
boundaries providing the DRBG 
mechanism functionality. Each sub-
boundary may be contained within a 
different cryptographic module boundary or 
multiple sub-boundaries may be contained 
within the same cryptographic module 
boundary. 

The use of distributed DRBG-mechanism functions may be convenient for restricted 
environments (e.g., smart card applications) in which the primary use of the DRBG does 
not require repeated use of the instantiate or reseed functions.  

Each DRBG mechanism boundary or sub-boundary shall contain a test function to test the 

“health” of other DRBG-mechanism functions within that boundary. In addition, a 

 

Figure 3: DRBG Mechanism Functions 
within a Single Device 

 

Figure 4: Distributed DRBG Mechanism Functions 
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boundary or sub-boundary that contains an instantiate function shall contain an 
uninstantiate function in order to perform and/or react to health testing.  

When DRBG mechanism functions are distributed, a physically or cryptographically 
secure channel shall be used to protect the confidentiality and integrity of the internal state 
or parts of the internal state that are transferred between the distributed DRBG mechanism 
sub-boundaries. The security provided by the secure channel shall be consistent with the 
security required by the consuming application. See Section 4 for a more complete 
definition of a secure channel. 

For distributed DRBGs, each sub-boundary is the same as or is fully contained within a 
cryptographic module boundary. 

8.6 Seeds 

When a DRBG is used to generate pseudorandom bits, a seed shall be acquired prior to the 
generation of output bits by the DRBG. The seed is used to instantiate the DRBG and 
determine the initial internal state that is used when calling the DRBG to obtain the first 
output bits.  

Reseeding is a means of restoring the secrecy of the output of the DRBG if a seed or the 
internal state becomes known. Periodic reseeding is a good way of addressing the threat of 
either the DRBG seed, entropy input or working state being compromised over time. In 
some implementations (e.g., smartcards), an adequate reseeding process may not be 
possible. In these cases, the best policy might be to replace the DRBG, obtaining a new 
seed in the process (e.g., obtain a new smart card). 

The seed and its use by a DRBG mechanism shall be generated and handled as specified in 
the following subsections. 

8.6.1 Seed Construction for Instantiation 

Figure 5 depicts the seed-construction 
process for instantiation. The seed 
material used to determine a seed for 
instantiation consists of entropy input 
from a randomness source, a nonce 
and an optional personalization string. 
Entropy input shall always be used in 
the construction of a seed; 
requirements for the entropy input are 
discussed in Section 8.6.3. Except for 
the case noted below, a nonce shall be 
used; requirements for the nonce are 
discussed in Section 8.6.7. A 
personalization string should also be 
used; requirements for the 
personalization string are discussed in Section 8.7.1.  

 

Figure 5: Seed Construction for Instantiation 
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Depending on the DRBG mechanism 
and the randomness source, a derivation 
function may be required to derive a 
seed from the seed material. However, 
in certain circumstances, the DRBG 
mechanism based on block cipher 
algorithms (see Section 10.2) may be 
implemented without a derivation 
function. When implemented in this 
manner, a (separate) nonce (as shown in 
Figure 5) is not used. Note, however, 
that the personalization string could 
contain a nonce, if desired. 

8.6.2 Seed Construction for Reseeding 

Figure 6 depicts the seed construction process for reseeding an instantiation. The seed 
material for reseeding consists of a value that is carried in the internal state3, new entropy 
input (i.e., with fresh entropy) and, optionally, additional input. The internal state value 
and the entropy input are required; requirements for the entropy input are discussed in 
Section 8.6.3. Requirements for the additional input are discussed in Section 8.7.2. As in 
Section 8.6.1, a derivation function may be required for reseeding.  

8.6.3 Entropy Requirements for the Entropy Input 

The entropy input shall have entropy that is equal to or greater than the security strength of 
the instantiation. Additional entropy may be provided in the nonce or the optional 
personalization string during instantiation, or in the additional input during reseeding and 
generation, but this is not required and does not increase the “official” security strength of 
the DRBG instantiation that is recorded in the internal state. The use of more entropy than 
the minimum value will offer a security “cushion”. This may be useful if the assessment of 
the entropy provided in the entropy input is incorrect. Having more entropy than the assessed 
amount is acceptable; having less entropy than the assessed amount could be fatal to security. 
The presence of more entropy than is required, especially during the instantiation, will 
provide a higher level of assurance than the minimum required entropy. 

8.6.4 Seed Length 

The minimum length of the seed depends on the DRBG mechanism and the security 
strength required by the consuming application, but shall be at least the number of bits of 
entropy required. See the tables in Section 10. 

                                                 
3 See each DRBG mechanism specification for the value that is used. 

 

Figure 6: Seed Construction for Reseeding 
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8.6.5 Randomness Source  

A DRBG mechanism requires a randomness source during instantiation and reseeding, 
including whenever prediction resistance is requested (see Section 8.8). This input is 
requested using the Get_entropy_input function introduced in Section 9 and is specified 
in more detail in SP 800-90C.  

8.6.6 Entropy Input and Seed Privacy 

The entropy input and the resulting seed shall be handled in a manner that is consistent 
with the security required for the data protected by the consuming application. For 
example, if the DRBG is used to generate keys, then the entropy inputs and seeds used to 
generate the keys shall (at a minimum) be protected as well as the keys. 

The security of the DRBG depends on the secrecy of the entropy input.  For this reason, 
the entropy input shall be treated as a critical security parameter (CSP) during 
cryptographic  module validation. 

8.6.7 Nonce 

A nonce may be required in the construction of a seed during instantation in order to 
provide a security cushion to block certain attacks. The nonce shall be either: 

a. A value with at least (security_strength/2) bits of entropy, or 

b. A value that is expected to repeat no more often than a (1/2 security_strength)-bit 
random string would be expected to repeat.  

Each nonce shall be unique to the cryptographic module in which instantiation is 
performed, but need not be secret. When used, the nonce shall be considered to be a 
critical security parameter. A nonce may be composed of one (or more) of the following 
components (other components may also be appropriate): 

1. A random value that is generated anew for each nonce, using an approved random 
bit generator.  

2. A timestamp of sufficient resolution (detail) so that it is different each time it is 
used. 

3. A monotonically increasing sequence number, or 

4. A combination of a timestamp and a monotonically increasing sequence number, 
such that the sequence number is reset when and only when the timestamp changes. 
(For example, a timestamp may show the date but not the time of day, so a 
sequence number is appended that will not repeat during a particular day.)  

For case 1 above, the random value could be acquired from the same source and at the 
same time as the entropy input. In this case, the seed could be considered to be constructed 
from an “extra strong” entropy input and the optional personalization string, where the 
entropy for the entropy input is equal to or greater than (3/2 security_strength) bits.  
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For case 2 above, the timestamp must be trusted. A trusted timestamp is generated and 
signed by an entity that is trusted to provide accurate time information. 

The nonce provides greater assurance that the DRBG provides security_strength bits of 
security to the consuming application. If a DRBG were instantiated many times without a 
nonce, a compromise could become more likely. In some consuming applications, a single 
DRBG compromise could reveal long-term secrets (e.g., a compromise of the DSA per-
message secret could reveal the signing key). 

The requirement for the generation of a nonce within a cryptographic-module boundary 
does not preclude the generation of the nonce in a cryptographic module that is different 
from the cryptographic boundary containing the DRBG function with which the nonce is 
used (e.g., the cryptographic module boundary containing an instantiate function). 
However, in this scenario, there needs to be a secure channel to transport the nonce 
between the cryptographic-module boundaries. See the discussion of distributed DRBGs in 
Section 8.5 and distributed RBGs in SP 800-90C. 

8.6.8 Reseeding 

Generating too many outputs from a seed (and other input information) may provide 
sufficient information for successfully predicting future outputs (see Section 8.8). Periodic 
reseeding will reduce security risks, reducing the likelihood of a compromise of the data 
that is protected by cryptographic mechanisms that use the DRBG. 

Seeds have a finite seedlife (i.e., the number of outputs that are produced during a seed 
period); the maximum seedlife is dependent on the DRBG mechanism used. 
Implementations shall enforce the limits on seedlife specified for the DRBG mechanism 
used or more stringent limits selected by the implementer.  When a DRBG's maximum 
seedlife is reached, the DRBG shall not generate outputs until it has been reseeded. 

Reseeding is accomplished by 1) an explicit reseeding of the DRBG by the consuming 
application, 2) by the generate function when prediction resistance is requested (see 
Section 8.8) or 3) when the end of the seed life is determined during the generate function 
(see Section 9.3.1).  

The reseeding of the DRBG shall be performed in accordance with the specification for a 
given DRBG mechanism. The DRBG reseed specifications within this Recommendation 
are designed to produce a new seed that is determined by both the old seed and newly 
obtained entropy input that will support the desired security strength.  

An alternative to reseeding would be to create an entirely new instantiation. However, 
reseeding is preferred over creating a new instantiation. If a DRBG instantiation was 
initially seeded with sufficient entropy, and the randomness source subsequently fails 
without being detected, then a new instantiation using the same (failed) source would not 
have sufficient entropy to operate securely. However, if there is an undetected failure in the 
randomness source of an already properly seeded DRBG instantiation, the DRBG 
instantiation will still retain any previous entropy when the reseed operation fails to 
introduce new entropy.  



NIST SP 800-90A, Rev. 1  November 2014 

22  

 

8.6.9 Seed Use 

The seed that is used to initialize one instantiation of a DRBG shall not be intentionally 
used to reseed the same instantiation or used as the seed for another DRBG instantiation. 
In addition, a DRBG instantiation shall not reseed itself. Note that a DRBG does not 
provide output until a seed is available, and the internal state has been initialized (see 
Section 10). 

8.6.10 Entropy Input and Seed Separation 

The seed used by a DRBG and the entropy input used to create that seed shall not 
intentionally be used for other purposes (e.g., domain parameter or prime number 
generation). 

8.7  Other Input to the DRBG Mechanism 

Other input may be provided during DRBG instantiation, generation and reseeding. This 
input may contain entropy, but this is not required. During instantiation, a personalization 
string may be provided and combined with entropy input and a nonce to derive a seed (see 
Section 8.6.1). When pseudorandom bits are requested and when reseeding is performed, 
additional input may be provided (see Section 8.7.2).  

Depending on the method for acquiring the input, the exact value of the input may or may 
not be known to the user or consuming application. For example, the input could be 
derived directly from values entered by the user or consuming application, or the input 
could be derived from information introduced by the user or consuming application (e.g., 
from timing statistics based on key strokes), or the input could be the output of another 
RBG.  

8.7.1 Personalization String 

A personalization string is an optional input to the instantiate function and is used to derive 
the seed (see Section 8.6.1).  The personalization string may be obtained from inside or 
outside a cryptographic module, and may be an empty string.  Note that a DRBG does not 
rely on a personalization string to provide entropy, even though entropy could be provided 
in the personalization string, and knowledge of the personalization string by an adversary 
does not degrade the security strength of a DRBG instantiation, as long as the entropy 
input is unknown. When used within a cryptograhic module, a personalization string is not 
considered to be a critical security parameter. 

The personalization string may contain secret information, but shall not include secret 
information that requires protection at a higher security strength than the DRBG being 
instantiated will support.  For example, a personalization string to be used to instantiate a 
DRBG at 112 bits of security strength shall not include information requiring 128 bits of 
protection.  A given implementation of a DRBG may support the use of a personalization 
string, but is not required to do so. 
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The intent of a personalization string is to introduce additional input into the instantiation 
of a DRBG. This personalization string might contain values unknown to an attacker, or 
values that tend to differentiate this DRBG instantiation from all others. Ideally, a 
personalization string will be set to some bitstring that is as unique as possible. Good 
sources for the personalization string contents include: 

• Application identifiers, 
• Device serial numbers, 
• User identification, 
• Per-module or per-device values, 
• Timestamps, 
• Network addresses,  

• Special key values for this specific 
DRBG instantiation, 

• Protocol version identifiers,  
• Random numbers, 
• Nonces, and 
• Outputs from other approved or non-

approved random bit generators.  

8.7.2 Additional Input 

Additional input may optionally be provided to the reseed and generate functions during 
requests.  The additional input may be obtained from inside or outside a cryptographic 
module, and may include secret or public information. Note that a DRBG does not rely on 
additional input to provide entropy, even though entropy could be provided in the 
additional input, and knowledge of the additional input by an adversary does not degrade 
the security strength of a DRBG. However, if the additional input contains secret/private 
information (e.g., a social security number), that information shall not require protection at 
a higher security strength than the security strength supported by the DRBG. A given 
implementation of a DRBG may include the additional input, but is not required to do so.  
When used within a cryptograhic module, the additional input used in DRBG requests is 
not considered to be a critical security parameter unless any secret information included in 
the additional input qualifies as a critical security parameter. 

Additional input is optional for both the DRBG and the consuming application, and the 
ability to enter additional input may or may not be included in an implementation. The 
value of the additional input may be either secret or publicly known; its value is arbitrary, 
although its length may be restricted, depending on the implementation and the DRBG 
mechanism. The use of additional input may be a means of providing more entropy for the 
DRBG internal state that will increase assurance that the entropy requirements are met. If 
the additional input is kept secret and has sufficient entropy, the input can provide more 
assurance when recovering from the compromise of the entropy input, the seed or one or 
more DRBG internal states.  

8.8 Prediction Resistance and Backtracking Resistance 

Figure 7 depicts the sequence of DRBG internal states that result from a given seed. Some 
subset of bits from each internal state are used to generate pseudorandom bits upon request 
by a user. The following discussions will use the figure to explain backtracking and 
prediction resistance.  
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Suppose that a compromise occurs at Statex, where Statex contains both secret and non-
secret information. 

Backtracking Resistance: Backtracking resistance is provided relative to time T if there is 
assurance that an adversary who has knowledge of the internal state of the DRBG at some 
time subsequent to time T would be unable to distinguish between observations of ideal 
random bitstrings and (previously unseen) bitstrings that were output by the DRBG prior to 
time T. This assumes that the adversary is incapable of performing the work required to 
negate the claimed security strength of the DRBG. Backtracking resistance means that a 
compromise of the DRBG internal state has no effect on the security of prior outputs.  That 
is, an adversary who is given access to all of the prior output sequence cannot distinguish it 
from random output with less work than is associated with the security strength of the 
instantiation; if the adversary knows only part of the prior output, he cannot determine any 
bit of that prior output sequence that he has not already seen with better than a 50-50 
chance.  
For example, suppose that an adversary knows Statex. Backtracking resistance means that: 

a. The output bits from State1 to Statex-1 cannot be distinguished from random output, 
and 

b. The prior internal state values themselves (State1 to Statex-1) cannot be recovered, 
given knowledge of the secret information in Statex. 

Backtracking resistance can be provided by ensuring that the DRBG generation algorithm 
is a one-way function. All DRBG mechanisms in this Recommendation have been 
designed to provide backtracking resistance. 

 Prediction Resistance: Prediction resistance means that a compromise of the DRBG 
internal state has no effect on the security of future DRBG outputs.  That is, an adversary 
who is given access to all of the output sequence after the compromise cannot distinguish it 
from random output with less work than is associated with the security strength of the 
instantiation; if the adversary knows only part of the future output sequence, he cannot 
predict any bit of that future output sequence that he does not already known (with better 
than a 50-50 chance). 
For example, suppose that an adversary knows Statex: Prediction resistance means that: 

a. The output bits from Statex+1 and forward cannot be distinguished from an ideal 
random bitstring by the adversary, and 

 

Figure 7: Sequence of DRBG States 
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b. The future internal state values themselves (Statex+1 and forward) cannot be 
predicted (with better than a 50-50 chance), given knowledge of Statex. 

Prediction resistance is provided relative to time T if there is assurance that an adversary 
with knowledge of the state of the RBG at some time(s) prior to T (but incapable of 
performing work that matches the claimed security strength of the RBG) would be unable 
to distinguish between observations of ideal random bitstrings and (previously unseen) 
bitstrings output by the RBG at or subsequent to time T. In particular, an RBG whose 
design allows the adversary to step forward from the initially compromised RBG state(s) to 
obtain knowledge of subsequent RBG states and the corresponding outputs (including the 
RBG state and output at time T) would not provide prediction resistance relative to time T. 

Prediction resistance can be provided only by ensuring that a DRBG is effectively reseeded 
with fresh entropy between DRBG requests.  That is, an amount of entropy that is 
sufficient to support the security strength of the DRBG being reseeded (i.e., an amount that 
is at least equal to the security strength) must be provided to the DRBG in a way that 
ensures that knowledge of the current DRBG internal state does not allow an adversary any 
useful knowledge about future DRBG internal states or outputs. Prediction resistance can 
be provided when the randomness source is or has direct or indirect access to an entropy 
source or an NRBG (see Section 8.6.5).  

For example, suppose that an adversary knows internal statex-2 (see Figure 7). If the 
adversary also knows the DRBG mechanism used, he then has enough information to 
compute statex-1 and statex. If prediction is then requested for the next bits that are to be 
output from the DRBG, new entropy bits will be inserted into the DRBG instantiation that 
will create a "barrier" between statex and statex+1, i.e., the adversary will not be able to 
compute statex+1, simply by knowing statex; the work required will be greatly increased by 
the entropy inserted during the prediction request. 

The introduction of fresh entropy via reseeding will also make the DRBG less susceptible 
to cryptanalytic attack. Whenever an entropy source is available, it is strongly 
recommended that DRBGs be requested to provide prediction resistance as often as is 
practical.
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9 DRBG Mechanism Functions 

All DRBG mechanisms and algorithms are described in this document in pseudocode, 
which is intended to explain functionality. The pseudocode is not intended to constrain 
real-world implementations.  

Except for the health test function, which is discussed in Section 11.3, the functions of the 
DRBG mechanisms in this Recommendation are specified as an algorithm and an 
“envelope” of pseudocode around that algorithm. The pseudocode in the envelopes 
(provided in this section) checks the input parameters, obtains input not provided via the 
input parameters, accesses the appropriate DRBG algorithm and handles the internal state. 
A function need not be implemented using such envelopes, but the function shall have 
equivalent functionality.  

During instantiation and reseeding (see Sections 9.1 and 9.2), entropy input and (usually) a 
nonce are acquired for constructing a seed as discussed in Sections 8.6.1 and 8.6.2. In the 
specifications of this Recommendation, a Get_entropy_input function is used for this 
purpose. The entropy input and nonce shall be provided as discussed in Sections 8.6.5 and 
8.6.7 and in SP 800-90C.  

The Get_entropy_input function is specified in pseudocode in SP 800-90C for various 
RBG constructions; however, in general, the function has the following meaning: 

Get_entropy_input: A function that is used to obtain entropy input. The function call 
is: 

(status, entropy_input) = Get_entropy_input (min_entropy, min_ length, 
max_ length, prediction_resistance_request), 

which requests a string of bits (entropy_input) with at least min_entropy bits of 
entropy. The length for the string shall be equal to or greater than min_length bits, and 
less than or equal to max_length bits. The prediction_resistance_request parameter 
indicates whether or not prediction resistance is to be provided during the request (i.e., 
whether fresh entropy is required4). A status code is also returned from the function. 

Note that an implementation may choose to define this functionality differently by 
omitting some of the parameters; for example, for many of the DRBG mechanisms, 
min_length = min_entropy for the Get_entropy_input function, in which case, the second 
parameter could be omitted. 

In the pseudocode in this section, two classes of error codes are returned: ERROR_FLAG 
and CATASTROPHIC_ERROR_FLAG. The handling of these classes of error codes is 
discussed in Section 11.3.6. The error codes may, in fact, provide information about the 
                                                 
4 Entropy input may be obtained from an entropy source or an NRBG, both of which provide fresh entropy. 
Entropy input could also be obtained from a DRBG that may or may not have access to an entropy source or 
NRBG.  

The request for prediction resistance rules out the use of a DRBG that does not have access to either an 
entropy source or NRBG.  
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reason for the error; for example, when ERROR_FLAG is returned because of an incorrect 
input parameter, the ERROR_FLAG may indicate the problem.  

Consuming applications should check the status returned from DRBG functions to 
determine whether or not the request was successful or if remediary action is required. For 
example, when the instantitate function returns an error, an instantiation will not have been 
created, and an invalid state_handle will be returned (see Section 9.1); however, the lack 
of a state_handle will be detected in a subsequent reseed or generate request. When the 
reseed function returns an error (see Section 9.2), the indicated instantiation will not have 
been reseeded (i.e., the internal state will not heve been injected with fresh entropy). When 
the generate function returns an error, a null string is returned as the output string (see 
Section 9.3.1) and shall not be used as pseudorandom output. 

Comments are often included in the pseudocode in this Recommendation. A comment 
placed on a line that includes pseudocode applies to that line; a comment placed on a line 
containing no pseudocode applies to one or more lines of pseudocode immediately below 
that comment. 

9.1 Instantiating a DRBG 

A DRBG shall be instantiated prior to the generation of pseudorandom bits. The instantiate 
function: 

1. Checks the validity of the input parameters, 

2. Determines the security strength for the DRBG instantiation,  

3. Obtains entropy input with entropy sufficient to support the security strength, 

4. Obtains the nonce (if required), 

5. Determines the initial internal state using the instantiate algorithm, and 

6. If an implemention supports multiple simultaneous instantiations of the same 
DRBG, a state_handle for the internal state is returned to the consuming 
application (see below). 

Let working_state be the working state for the particular DRBG mechanism (e.g., 
HMAC_DRBG), and let min_length, max_ length, and 
highest_supported_security_strength be defined for each DRBG mechanism (see Section 
10). Let Instantiate_algorithm be a call to the appropriate instantiate algorithm for the 
DRBG mechanism (see Section 10). 

The following or an equivalent process shall be used to instantiate a DRBG. 

Instantiate_function (requested_instantiation_security_strength, 
prediction_resistance_flag, personalization_string): 
1.  requested_instantiation_security_strength: A requested security strength for the 

instantiation. Implementations that support only one security strength do not 
require this parameter; however, any consuming application using that 
implementation must be aware of the security strength that is supported. 



NIST SP 800-90A, Rev. 1  November 2014 

28  

 

2. prediction_resistance_flag: Indicates whether or not prediction resistance may be 
required by the consuming application during one or more requests for 
pseudorandom bits. Implementations that always provide or do not support 
prediction resistance may not need to support this parameter if the intent is 
implicitly known. However, the user of a consuming application must determine 
whether or not prediction resistance may be required by the consuming application 
before electing to use such an implementation. If the prediction_resistance_flag is 
not needed (i.e., because prediction resistance is always performed or is not 
supported), then the prediction_resistance_flag input parameter and instantiate 
process step 2 are omitted, and the prediction_resistance_flag is omitted from the 
internal state in step 11 of the instantiate process. In addition, step 6 can be 
modified to not perform a check for the prediction_resistance_flag when the flag is 
not used in an implementation; in this case, the Get_entropy_input call need not 
include the prediction_resistance_request parameter. 

3. personalization_string: An optional input that provides personalization information 
(see Sections 8.6.1 and 8.7.1). The maximum length of the personalization string 
(max_personalization_string_length) is implementation dependent, but shall be 
less than or equal to the maximum length specified for the given DRBG mechanism 
(see Section 10). If the input of a personalization string is not supported, then the 
personalization_string input parameter and step 3 of the instantiate process are 
omitted, and instantiate process step 9 is modified to omit the personalization 
string. 

Required information not provided by the consuming application during 
instantiation (This information shall not be provided by the consuming application as an 
input parameter during the instantiate request): 

1. entropy_input: Input bits containing entropy. The maximum length of the 
entropy_input is implementation dependent, but shall be less than or equal to the 
specified maximum length for the selected DRBG mechanism (see Section 10). 

2. nonce: A nonce as specified in Section 8.6.7. Note that if a random value is used in 
the nonce, the entropy_input and random portion of the nonce could be acquired 
using a single Get_entropy_input call (see step 6 of the instantiate process); in this 
case, the first parameter of the Get_entropy_input call is adjusted to include the 
entropy for the nonce (i.e., the security_strength is increased by at least ½ 
security_strength, and min-length is increased to accommodate the length of the 
nonce), instantiate process step 8 is omitted, and the nonce is omitted from the 
parameter list in instantiate process step 9. 

Note that in some cases, a nonce will not be used by a DRBG mechanism; in this 
case, step 8 is omitted, and the nonce is omitted from the parameter list in 
instantiate process step 9. 

Output to a consuming application after instantiation: 
1. status: The status returned from the instantiate function. If any status other than 

SUCCESS is returned, either no state_handle or an invalid state_handle shall be 
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returned to the consuming application. A consuming application should check the 
status to determine that the DRBG has been correctly instantiated. 

2. state_handle: Used to identify the internal state for this instantiation in subsequent 
calls to the generate, reseed, uninstantiate and test functions.  

If a state handle is not required for an implementation because the implementation 
does not support multiple simultaneous instantiations, a state_handle need not be 
returned. In this case, instantiate process step 10 is omitted, process step 11 is 
revised to save the only internal state, and process step 12 is altered to omit the 
state_handle. 

Information retained within the DRBG mechanism boundary after instantiation: 

The internal state for the DRBG, including the working_state and administrative 
information (see Sections 8.3 and 10 for definitions of the working_state and 
administrative information). 

Instantiate Process: 
Comment: Check the validity of the input 
parameters. 

1. If requested_instantiation_security_strength > 
highest_supported_security_strength, then return (ERROR_FLAG, Invalid). 

2. If prediction_resistance_flag is set, and prediction resistance is not supported, then 
return (ERROR_FLAG, Invalid). 

3. If the length of the personalization_string > max_personalization_string_length, 
return (ERROR_FLAG, Invalid). 

4. Set security_strength to the lowest security strength greater than or equal to 
requested_instantiation_security_strength from the set {112, 128, 192, 256}. 

5. Null step. Comment: This null step replaces a step from 
the original version of SP 800-90 without 
changing the step numbers. 

Comment: Obtain the entropy input. 

6.  (status, entropy_input) = Get_entropy_input (security_strength, min_length, 
max_length, prediction_resistance_request). 

Comment: status indications other than 
SUCCESS could be ERROR_FLAG or 
CATASTROPHIC_ERROR_FLAG, in 
which case, the status is returned to the 
consuming application to handle. In this case, 
ERROR_FLAG could be returned because 
entropy is currently unavailable, and 
CATASTROPHIC_ERROR_FLAG could 
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be returned, for example, because an entropy 
source failed.  

7. If (status ≠ SUCCESS), return (status, Invalid).  
8. Obtain a nonce. Comment: This step shall include any 

appropriate checks on the acceptability of the 
nonce. See Section 8.6.7. 

Comment: Call the appropriate instantiate 
algorithm in Section 10 to obtain values for 
the initial working_state. 

9. initial_working_state = Instantiate_algorithm (entropy_input, nonce, 
personalization_string, security_strength).  

10. Get a state_handle for a currently empty internal state. If an empty internal state 
cannot be found, return (ERROR_FLAG, Invalid). 

11. Set the internal state for the new instantiation (e.g., as indicated by state_handle) to 
the initial values for the internal state (i.e., set the working_state to the values 
returned as initial_working_state in step 9 and any other values required for the 
working_state (see Section 10), and set the administrative information to the 
appropriate values (e.g., the values of security_strength and the 
prediction_resistance_flag). 

12. Return (SUCCESS, state_handle). 

9.2 Reseeding a DRBG Instantiation 

The reseeding of an instantiation is not required, but is recommended whenever a 
consuming application and implementation are able to perform this process. Reseeding 
will insert additional entropy input into the generation of pseudorandom bits. Reseeding 
may be: 

• Explicitly requested by a consuming application,  

• Performed when prediction resistance is requested by a consuming application, 

• Triggered by the generate function when a predetermined number of 
pseudorandom outputs have been produced or a predetermined number of generate 
requests have been made (i.e., at the end of the seedlife), or  

• Triggered by external events (e.g., whenever entropy is available).  

The reseed function: 

1. Checks the validity of the input parameters, 

2. Obtains entropy input from a randomness source that supports the security strength 
of the DRBG, and 
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3. Using the reseed algorithm, combines the current working state with the new 
entropy input and any additional input to determine the new working state. 

Let working_state be the working state for the particular DRBG instantiation (e.g., 
HMAC_DRBG) , let min_length and max_ length be defined for each DRBG mechanism, 
and let Reseed_algorithm be a call to the appropriate reseed algorithm for the DRBG 
mechanism (see Section 10). 

The following or an equivalent process shall be used to reseed the DRBG instantiation. 

Reseed_function (state_handle, prediction_resistance_request, additional_input): 
1) state_handle: A pointer or index that indicates the internal state to be reseeded. If a 

state handle is not used by an implementation because the implemention does not 
support multiple simultaneous instantiations, a state_handle is not provided as 
input. Since there is only a single internal state in this case, reseed process step 1 
obtains the contents of the internal state, and process step 6 replaces the 
working_state of this internal state.  

2) prediction_resistance_request: Indicates whether or not prediction resistance is to 
be provided during the request (i.e., whether or not fresh entropy bits are 
required)5. Without the explicit prediction resistance request, the entropy input 
could be provided from either a DRBG with no access to an entropy source (i.e., 
fresh entropy would not be provided), or the entropy input could be provided by an 
entropy source or by an RBG with access to an entropy source (i.e., fresh entropy 
would be provided in these cases).   

DRBGs that are implemented to always support prediction resistance or to never 
support prediction resistance do not require this parameter. However, when 
prediction resistance is not supported, the user of a consuming application must 
determine whether or not prediction resistance may be required by the application 
before electing to use such a DRBG implementation.  

If prediction resistance is not supported, then the prediction_resistance_request 
input parameter and step 2 of the reseed process is omitted, and reseed process step 
4 is modified to omit the prediction_resistance_request parameter.  

If prediction resistance is always performed, then the prediction_resistance_request 
input parameter and reseed process step 2 may be omitted, and reseed process step 
4 is replaced by: 

(status, entropy_input) = Get_entropy_input (security_strength, min_length, 
max_length) 

                                                 
5 A DRBG may be reseeded by an entropy source or an NRBG, both of which provide fresh entropy. A 
DRBG could also be reseeded by a DRBG that may or may not have access to an entropy source or NRBG. 
The request for prediction resistance during reseeding rules out the use of a DRBG that does not have access 
to either an entropy source or NRBG. See SP 800-90C for further discussion. 
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3) additional_input: An optional input. The maximum length of the additional_input 
(max_additional_input_length) is implementation dependent, but shall be less than 
or equal to the maximum value specified for the given DRBG mechanism (see 
Section 10). If the input by a consuming application of additional_input is not 
supported, then the input parameter and step 2 of the reseed process are omitted, 
and step 5 of the reseed process is modified to remove the additional_input from 
the parameter list. 

Required information not provided by the consuming application during reseeding 
(This information shall not be provided by the consuming application as an input 
parameter during the reseed request): 

1. entropy_input: Input bits containing entropy. This input shall not be provided by 
the DRBG instantiation being reseeded. The maximum length of the entropy_input 
is implementation dependent, but shall be less than or equal to the specified 
maximum length for the selected DRBG mechanism (see Section 10). 

2. Internal state values required by the DRBG for the working_state and 
administrative information, as appropriate. 

Output to a consuming application after reseeding: 
1. status: The status returned from the function.  

 
Information retained within the DRBG mechanism boundary after reseeding: 

Replaced internal state values (i.e., the working_state). 

Reseed Process: 
Comment: Get the current internal state and 
check the input parameters. 

1. Using state_handle, obtain the current internal state. If state_handle indicates an 
invalid or unused internal state, return (ERROR_FLAG). 

2. If prediction_resistance_request is set, and prediction_resistance_flag is not set, 
then return (ERROR_FLAG). 

3. If the length of the additional_input > max_additional_input_length, return 
(ERROR_FLAG).  

Comment: Obtain the entropy input. 

4.  (status, entropy_input) = Get_entropy_input (security_strength, min_length, 
max_length, prediction_resistance_request). 

Comment: status indications other than 
SUCCESS could be ERROR_FLAG or 
CATASTROPHIC_ERROR_FLAG, in 
which case, the status is returned to the 
consuming application to handle. In this case, 
ERROR_FLAG could be returned because 
entropy is currently unavailable, and 
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CATASTROPHIC_ERROR_FLAG could 
be returned because an entropy source failed. 

5. If (status ≠ SUCCESS), return (status). 
Comment: Get the new working_state using 
the appropriate reseed algorithm in Section 
10.  

6. new_working_state = Reseed_algorithm (working_state, entropy_input, 
additional_input). 

7 Replace the working_state in the internal state for the DRBG instantiation (e.g., as 
indicated by state_handle) with the values of new_working_state obtained in step 
6. 

8. Return (SUCCESS). 

9.3 Generating Pseudorandom Bits Using a DRBG 

This function is used to generate pseudorandom bits after instantiation or reseeding. The 
generate function: 

1. Checks the validity of the input parameters. 

2. Calls the reseed function to obtain sufficient entropy if the instantiation needs 
additional entropy because the end of the seedlife has been reached or prediction 
resistance is required; see Sections 9.3.2 and 9.3.3 for more information on 
reseeding at the end of the seedlife and on handling prediction resistance requests.  

3. Generates the requested pseudorandom bits using the generate algorithm.  
4. Updates the working state. 

5. Returns the requested pseudorandom bits to the consuming application.  

9.3.1 The Generate Function 

Let outlen be the length of the output block of the cryptographic primitive (see Section 10). 
Let Generate_algorithm be a call to the appropriate generate algorithm for the DRBG 
mechanism (see Section 10), and let Reseed_function be a call to the reseed function in 
Section 9.2. 

The following or an equivalent process shall be used to generate pseudorandom bits. 

Generate_function (state_handle, requested_number_of_bits, 
requested_security_strength,  prediction_resistance_request, additional_input): 
1. state_handle: A pointer or index that indicates the internal state to be used. If a 

state handle is not used by an implementation because the implemention does not 
support multiple simultaneous instantiations, a state_handle is not provided as 
input. The state_handle is then omitted from the input parameter list in process step 
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7.1, generate process steps 1 and 7.3 are used to obtain the contents of the internal 
state, and process step 10 replaces the working_state of this internal state. 

2. requested_number_of_bits: The number of pseudorandom bits to be returned from 
the generate function. The max_number_of_bits_per_request is implementation 
dependent, but shall be less than or equal to the value provided in Section 10 for a 
specific DRBG mechanism. 

3. requested_security_strength: The security strength to be associated with the 
requested pseudorandom bits. DRBG implementations that support only one 
security strength do not require this parameter; however, any consuming 
application using that DRBG implementation must be aware of the supported 
security strength. 

4. prediction_resistance_request: Indicates whether or not prediction resistance is to 
be provided during the request. DRBGs that are implemented to always provide 
prediction resistance or that do not support prediction resistance do not require this 
parameter. However, when prediction resistance is not supported, the user of a 
consuming application must determine whether or not prediction resistance may be 
required by the application before electing to use such a DRBG implementation.  

If prediction resistance is not supported, then the prediction_resistance_request 
input parameter and steps 5 and 9.2 of the generate process are omitted, and 
generate process steps 7 and 7.1 are modified to omit the check for the 
prediction_resistance_request term.  

If prediction resistance is always performed, then the prediction_resistance_request 
input parameter and generate process steps 5 and 9.2 may be omitted, and generate 
process steps 7 and 8 may be replaced by: 

status = Reseed_function (state_handle, additional_input). 
Comment: status indications other than 
SUCCESS could be ERROR_FLAG or 
CATASTROPHIC_ERROR_FLAG, in 
which case, the status is returned to the 
consuming application to handle. In this case, 
ERROR_FLAG could be returned because 
entropy is currently unavailable, and 
CATASTROPHIC_ERROR_FLAG could 
be returned because an entropy source failed. 

If (status ≠ SUCCESS), return (status, Null). 
Using state_handle, obtain the new internal state. 

(status, pseudorandom_bits, new_working_state) = Generate_algorithm 
(working_state, requested_number_of_bits). 

Note that if the input of additional_input is not supported, then the additional_input 
parameter in the Reseed_function call above may be omitted. 
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5. additional_input: An optional input. The maximum length of the additional_input 
(max_additional_input_length) is implementation dependent, but shall be less than 
or equal to the specified maximum length for the selected DRBG mechanism (see 
Section 10). If the input of additional_input is not supported, then the input 
parameter, generate process steps 4 and 7.4, and the additional_input input 
parameter in generate process steps 7.1 and 8 are omitted. 

Required information not provided by the consuming application during generation: 
1. Internal state values required for the working_state and administrative information, 

as appropriate. 

Output to a consuming application after generation: 
1. status: The status returned from the generate function. If any status other than 

SUCCESS is returned, a Null string shall be returned as the pseudorandom bits. 

2. pseudorandom_bits: The pseudorandom bits that were requested or a Null string. 

Information retained within the DRBG mechanism boundary after generation: 
Replaced internal state values (i.e., the new working_state). 

Generate Process: 
Comment: Get the internal state and check the 
input parameters. 

1. Using state_handle, obtain the current internal state for the instantiation. If 
state_handle indicates an invalid or unused internal state, then return 
(ERROR_FLAG, Null). 

2. If requested_number_of_bits > max_number_of_bits_per_request, then return 
(ERROR_FLAG, Null). 

3. If requested_security_strength > the security_strength indicated in the internal 
state, then return (ERROR_FLAG, Null). 

4. If the length of the additional_input > max_additional_input_length, then return 
(ERROR_FLAG, Null).  

5. If prediction_resistance_request is set, and prediction_resistance_flag is not set, 
then return (ERROR_FLAG, Null). 

6. Clear the reseed_required_flag. Comment: See Section 9.3.2 for a discussion. 
Comment: Reseed if necessary (see Section 
9.2). 

7. If reseed_required_flag is set, or if prediction_resistance_request is set, then 

7.1 status = Reseed_function (state_handle, prediction_resistance_request, 
additional_input). 

Comment: status indications other than 
SUCCESS could be ERROR_FLAG or 
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CATASTROPHIC_ERROR_FLAG, in 
which case, the status is returned to the 
consuming application to handle. In this case, 
ERROR_FLAG could be returned because 
entropy is currently unavailable, and 
CATASTROPHIC_ERROR_FLAG could 
be returned because an entropy source failed.  

7.2 If (status ≠ SUCCESS), then return (status, Null). 
7.3 Using state_handle, obtain the new internal state. 

7.4 additional_input = the Null string. 

7.5 Clear the reseed_required_flag. 

Comment: Request the generation of 
pseudorandom_bits using the appropriate 
generate algorithm in Section 10. 

8. (status, pseudorandom_bits, new_working_state) = Generate_algorithm 
(working_state, requested_number_of_bits, additional_input). 

9. If status indicates that a reseed is required before the requested bits can be 
generated, then 

9.1 Set the reseed_required_flag. 
9.2 If the prediction_resistance_flag is set, then set the prediction_resistance 

request indication. 

9.3 Go to step 7. 

10. Replace the old working_state in the internal state of the DRBG instantiation (e.g., 
as indicated by state_handle) with the values of new_working_state. 

11. Return (SUCCESS and pseudorandom_bits). 

Implementation notes: 

If a reseed capability is not supported, or a reseed is not desired, then generate process 
steps 6 and 7 are removed; and generate process step 9 is replaced by: 

9. If status indicates that a reseed is required before the requested bits can be 
generated, then  

9.1 status = Uninstantiate_function (state_handle). 

9.2 Return an indication that the DRBG instantiation can no longer be used. 

9.3.2 Reseeding at the End of the Seedlife 

When pseudorandom bits are requested by a consuming application, the generate function 
checks whether or not a reseed is required by comparing the counter within the internal 
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state (see Section 8.3) against a predetermined reseed interval for the DRBG 
implementation. This is specified in the generate process (see Section 9.3.1) as follows: 

a. Step 6 clears the reseed_required_flag. 

b. Step 7 checks the value of the reseed_required_flag. At this time, the 
reseed_required_flag is clear, so step 7 is skipped unless prediction resistance was 
requested by the consuming application. For the purposes of this explanation, 
assume that prediction resistance was not requested. 

c. Step 8 calls the Generate_algorithm, which checks whether a reseed is required. If 
it is required, an appropriate status is returned. 

d. Step 9 checks the status returned by the Generate_algorithm. If the status does 
not indicate that a reseed is required, the generate process continues with step 10. 

e. However, if the status indicates that a reseed is required (see step 9), then the 
reseed_required_flag is set, the prediction_resistance_request indicator is set if the 
instantiation is capable of performing prediction resistance, and processing 
continues by going back to step 7. This is intended to obtain fresh entropy for 
reseeding at the end of the reseed interval whenever access to fresh entropy is 
available (see the concept of Live Entropy sources in SP 800-90C). 

f. The substeps in step 7 are executed. The reseed function is called; any 
additional_input provided by the consuming application in the generate request is 
used during reseeding. The new values of the internal state are acquired, any 
additional_input provided by the consuming application in the generate request is 
replaced by a Null string, and the reseed_required_flag is cleared. 

g. The generate algorithm is called (again) in step 8, the check of the returned status is 
made in step 9, and (presumably) step 10 is then executed.  

9.3.3 Handling Prediction Resistance Requests 

When pseudorandom bits are requested by a consuming application with prediction 
resistance, the generate function specified in Section 9.3.1 checks that the instantiation 
allows prediction resistance requests (see step 5 of the generate process); clears the 
reseed_required_flag (even though the flag won’t be used in this case); executes the 
substeps of generate process step 7, resulting in a reseed, a new internal state for the 
instantiation, and setting the additional input to a Null value; obtains pseudorandom bits 
(see generate process step 8); passes through generate process step 9, since another reseed 
will not be required; and continues with generate process step 10. 

9.4 Removing a DRBG Instantiation 

The internal state for an instantiation may need to be “released” by erasing (i.e., zeroizing) 
the contents of the internal state. The uninstantiate function: 

1. Checks the input parameter for validity, and 
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2. Empties the internal state.  

The following or an equivalent process shall be used to remove (i.e., uninstantiate) a 
DRBG instantiation: 

Uninstantiate_function (state_handle) : 

1. state_handle: A pointer or index that indicates the internal state to be “released”.  If 
a state handle is not used by an implementation because the implemention does not 
support multiple simultaneous instantiations, a state_handle is not provided as 
input. In this case, process step 1 is omitted, and process step 2 erases the internal 
state. 

Output to a consuming application after uninstantiation: 

1. status: The status returned from the function.  

Information retained within the DRBG mechanism boundary after uninstantiation: 

An empty internal state. 

Uninstantiate Process: 

1. If state_handle indicates an invalid state, then return (ERROR_FLAG).  

2. Erase the contents of the internal state indicated by state_handle. 

3. Return
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10 DRBG Algorithm Specifications 

Several DRBG mechanisms are specified in this Recommendation. The selection of a 
DRBG mechanism depends on several factors, including the security strength to be 
supported and what cryptographic primitives are available. An analysis of the consuming 
application’s requirements for random numbers should be conducted in order to select an 
appropriate DRBG mechanism. Conversion specifications required for the DRBG 
mechanism implementations (e.g., between integers and bitstrings) are provided in 
Appendix A. Pseudocode examples for each DRBG mechanism are provided in Appendix 
B. A detailed discussion on DRBG mechanism selection is provided in Appendix C.  

10.1 DRBG Mechanisms Based on Hash Functions 

A DRBG mechanism may be based on a hash function that is non-invertible or one-way. 
The hash-based DRBG mechanisms specified in this Recommendation have been designed 
to use any approved hash function and may be used by consuming applications requiring 
various security strengths, providing that the appropriate hash function is used and 
sufficient entropy is obtained for the seed. 

The following are provided as DRBG mechanisms based on hash functions:  

1. The Hash_DRBG specified in Section 10.1.1.  

2. The HMAC_DRBG specified in Section 10.1.2. 

The maximum security strength that can be supported by each DRBG based on a hash 
function is the security strength of the hash function used; the security strengths for the 
hash functions when used for random number generation are provided in SP 800-57] 
However, this Recommendation supports only four security strengths: 112, 128, 192, and 
256 bits. Table 2 specifies the values that shall be used for the function envelopes and 
DRBG algorithm for each approved hash function.  
Table 2: Definitions for Hash-Based DRBG Mechanisms 

 SHA-1 SHA-224 
and SHA-
512/224 

SHA-256 
and 

SHA-
512/256 

SHA-384 SHA-512 

Supported security strengths See SP 800-57 
highest_supported_security_strength See SP 800-57 
Output Block Length (outlen) 160 224 256 384 512 
Required minimum entropy for 
instantiate and reseed 

security_strength 

Minimum entropy input length 
(min_length) 

security_strength 
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 SHA-1 SHA-224 
and SHA-
512/224 

SHA-256 
and 

SHA-
512/256 

SHA-384 SHA-512 

Maximum entropy input length 
(max_ length) 

≤ 235 bits 

Seed length (seedlen) for 
Hash_DRBG 

440 440 440 888 888 

Maximum personalization string 
length 
(max_personalization_string_length)  

≤ 235 bits 

Maximum additional_input length 
(max_additional_input_length) 

≤ 235 bits 

max_number_of_bits_per_request ≤ 219 bits 
Number of requests between 
reseeds (reseed_interval) 

≤ 248  

 

Note that since SHA-224 is based on SHA-256, there is no efficiency benefit when using 
SHA-224, rather than SHA-256. Also note that since SHA-384, SHA-512/224 and SHA-
512/256 are based on SHA-512, there is no efficiency benefit for using these three SHA 
mechanisms, rather than using SHA-512. However, efficiency is just one factor to consider 
when selecting the appropriate hash function to use as part of a DRBG mechanism. 

10.1.1 Hash_DRBG 

Figure 8 presents the normal operation of the Hash_DRBG generate algorithm. The 
Hash_DRBG requires the use of a hash function during the instantiate, reseed and 
generate functions; the same hash function shall be used throughout a Hash_DRBG 
instantiation. Hash_DRBG uses the derivation function specified in Section 10.3.1 during 
instantiation and reseeding.  The hash function to be used shall meet or exceed the desired 
security strength of the consuming application.  

10.1.1.1  Hash_DRBG Internal State 

The internal_state for Hash_DRBG consists of: 

1. The working_state:  

a. A value (V) of seedlen bits that is updated during each call to the DRBG. 

b. A constant C of seedlen bits that depends on the seed. 

c. A counter (reseed_counter) that indicates the number of requests for 
pseudorandom bits since new entropy_input was obtained during instantiation 
or reseeding. 

 



NIST SP 800-90A, Rev. 1 Hash_DRBG November 2014 

41  

 

2. Administrative information: 

a. The security_strength of the 
DRBG instantiation. 

b. A prediction_resistance_flag 
that indicates whether or not a 
prediction resistance 
capability is available for the 
DRBG instantiation. 

The values of V and C are the critical 
values of the internal state upon which 
the security of this DRBG mechanism 
depends (i.e., V and C are the “secret 
values” of the internal state). 

10.1.1.2 Instantiation of 
Hash_DRBG 

Notes for the instantiate function 
specified in Section 9.1: 

The instantiation of Hash_DRBG 
requires a call to the 
Instantiate_function specified in 
Section 9.1. Process step 9 of that 
function calls the instantiate 
algorithm in this section.  

The values of 
highest_supported_security_strength 
and min_length are provided in Table 
2 of Section 10.1. The contents of the 
internal state are provided in Section 
10.1.1.1. 

The instantiate algorithm: 

Let Hash_df be the hash derivation function specified in Section 10.3.1 using the 
selected hash function. The output block length (outlen), seed length (seedlen) and 
appropriate security_strengths for the implemented hash function are provided in Table 
2 of Section 10.1.  

The following process or its equivalent shall be used as the instantiate algorithm for 
this DRBG mechanism (see step 9 of the instantiate process in Section 9.1). 

Hash_DRBG_Instantiate_algorithm (entropy_input, nonce, personalization_string, 
security_strength):  

1. entropy_input: The string of bits obtained from the randomness source. 

Figure 8: Hash_DRBG 
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2. nonce: A string of bits as specified in Section 8.6.7. 

3. personalization_string: The personalization string received from the consuming 
application. Note that the length of the personalization_string may be zero. 

4. security_strength: The security strength for the instantiation. This parameter is 
optional for Hash_DRBG, since it is not used. 

Output:  
1. initial_working_state: The inital values for V, C, and reseed_counter (see 

Section 10.1.1.1).  

Hash_DRBG Instantiate Process: 
1. seed_material = entropy_input || nonce || personalization_string. 

2. seed = Hash_df (seed_material, seedlen). 

3. V = seed.  

4. C = Hash_df ((0x00 || V), seedlen). Comment: Preceed V with a byte of 
zeros. 

5. reseed_counter = 1. 

6. Return V, C, and reseed_counter as the initial_working_state. 

10.1.1.3  Reseeding a Hash_DRBG Instantiation 

Notes for the reseed function specified in Section 9.2: 

The reseeding of a Hash_DRBG instantiation requires a call to the Reseed_function. 
Process step 6 of that function calls the reseed algorithm specified in this section. The 
values for min_length are provided in Table 2 of Section 10.1. 

The reseed algorithm: 

Let Hash_df be the hash derivation function specified in Section 10.3.1 using the 
selected hash function. The value for seedlen is provided in Table 2 of Section 10.1. 

The following process or its equivalent shall be used as the reseed algorithm for this 
DRBG mechanism (see step 6 of the reseed process in Section 9.2): 

Hash_DRBG_Reseed_algorithm (working_state, entropy_input, additional_input):  
1. working_state: The current values for V, C, and reseed_counter (see Section 

10.1.1.1).  

2. entropy_input: The string of bits obtained from the randomness source. 

3. additional_input: The additional input string received from the consuming 
application. Note that the length of the additional_input string may be zero. 

Output:  
1. new_working_state: The new values for V, C, and reseed counter.  



NIST SP 800-90A, Rev. 1 Hash_DRBG November 2014 

43  

 

 
Hash_DRBG Reseed Process: 

1. seed_material = 0x01 || V || entropy_input || additional_input. 
2. seed = Hash_df (seed_material, seedlen). 

3. V = seed. 

4. C = Hash_df ((0x00 || V), seedlen). Comment: Preceed with a byte of all 
zeros. 

5. reseed_counter = 1. 

6. Return V, C, and reseed_counter for the new_working_state. 

10.1.1.4  Generating Pseudorandom Bits Using Hash_DRBG 

Notes for the generate function specified in Section 9.3: 

The generation of pseudorandom bits using a Hash_DRBG instantiation requires a call 
to the generate function. Process step 8 of that function calls the generate algorithm 
specified in this section. The values for max_number_of_bits_per_request and outlen 
are provided in Table 2 of Section 10.1. 

The generate algorithm: 

Let Hash be the selected hash function. The seed length (seedlen) and the maximum 
interval between reseeding (reseed_interval) are provided in Table 2 of Section 10.1. 
Note that for this DRBG mechanism, the reseed counter is used to update the value of 
V, as well as to count the number of generation requests. 

The following process or its equivalent shall be used as the generate algorithm for this 
DRBG mechanism (see step 8 of the generate process in Section 9.3): 

Hash_DRBG_Generate_algorithm (working_state, requested_number_of_bits, 
additional_input):  
1. working_state: The current values for V, C, and reseed_counter (see Section 

10.1.1.1).  

2. requested_number_of_bits: The number of pseudorandom bits to be returned to 
the generate function. 

3. additional_input: The additional input string received from the consuming 
application. Note that the length of the additional_input string may be zero. 

Output:  
1. status: The status returned from the function. The status will indicate 

SUCCESS, or indicate that a reseed is required before the requested 
pseudorandom bits can be generated.  

2. returned_bits: The pseudorandom bits to be returned to the generate function. 
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3. new_working_state: The new values for V, C, and reseed_counter.  

Hash_DRBG Generate Process: 
1. If reseed_counter > reseed_interval, then return an indication that a reseed is 

required. 

2. If (additional_input ≠ Null), then do 
2.1 w = Hash (0x02 || V || additional_input). 
2.2 V = (V + w) mod 2seedlen. 

3. (returned_bits)  = Hashgen (requested_number_of_bits, V). 

4. H = Hash (0x03 || V). 

5. V = (V + H + C + reseed_counter) mod 2seedlen. 
6. reseed_counter = reseed_counter + 1. 

7. Return SUCCESS, returned_bits, and the new values of V, C, and 
reseed_counter for the new_working_state. 

Hashgen (requested_number_of_bits, V): 

Input:  
1. requested_no_of_bits: The number of bits to be returned. 

2.  V: The current value of V. 

Output: 
 1. returned_bits: The generated bits to be returned to the generate function. 

Hashgen Process: 

1. . 

2. data = V. 
3. W = the Null string. 

4. For i = 1 to m 

4.1 wi = Hash (data). 

4.2 W = W || wi. 
4.3 data = (data + 1) mod 2seedlen.  

5. returned_bits = leftmost (W, requested_no_of_bits). 
6. Return returned_bits. 
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10.1.2 HMAC_DRBG 

HMAC_DRBG uses multiple occurrences of an approved keyed hash function, which is 
based on an approved hash function. This DRBG mechanism uses the 
HMAC_DRBG_Update function specified in Section 10.1.2.2 and the HMAC function 
within the HMAC_DRBG_Update function as the derivation function during instantiation 
and reseeding. The same hash function 
shall be used throughout an 
HMAC_DRBG instantiation. The hash 
function used shall meet or exceed the 
security requirements of the consuming 
application.  

Figure 9 depicts the HMAC_DRBG in 
three stages. HMAC_DRBG is specified 
using an internal function 
(HMAC_DRBG_Update). This function 
is called during the HMAC_DRBG 
instantiate, generate and reseed algorithms 
to adjust the internal state when new 
entropy or additional input is provided, as 
well as to update the internal state after 
pseudorandom bits are generated. The 
operations in the top portion of the figure 
are only performed if the additional input 
is not null. Figure 10 depicts the 
HMAC_DRBG_Update function. 

10.1.2.1  HMAC_DRBG Internal 
State 

The internal state for HMAC_DRBG 
consists of: 

1. The working_state: 

a. The value V of outlen bits, 
which is updated each time 
another outlen bits of output 
are produced (where outlen is 
specified in Table 2 of Section 
10.1). 

b. The outlen-bit Key, which is 
updated at least once each time 
that the DRBG mechanism 
generates pseudorandom bits. 

 

 

 

Figure 9: HMAC_DRBG Generate Function 
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c. A counter (reseed_counter) that indicates the number of requests for 
pseudorandom bits since instantiation or reseeding. 

2. Administrative information: 

a. The security_strength of the 
DRBG instantiation. 

b. A prediction_resistance_flag 
that indicates whether or not a 
prediction resistance 
capability is required for the 
DRBG instantiation. 

The value of V and Key are the critical 
values of the internal state upon which 
the security of this DRBG mechanism 
depends (i.e., V and Key are the “secret 
values” of the internal state). 

10.1.2.2  The HMAC_DRBG 
Update  Function 
(Update) 

The HMAC_DRBG_Update function 
updates the internal state of 
HMAC_DRBG using the 
provided_data. Note that for this DRBG 
mechanism, the HMAC_DRBG_Update 
function also serves as a derivation 
function for the instantiate and reseed 
functions. 

Let HMAC be the keyed hash function specified in FIPS 198 using the hash function 
selected for the DRBG mechanism from Table 2 in Section 10.1.  

The following or an equivalent process shall be used as the HMAC_DRBG_Update 
function. 

HMAC_DRBG_Update (provided_data, K, V):  
1. provided_data: The data to be used. 

2. K: The current value of Key. 

3. V: The current value of V. 

Output:  
1. K: The new value for Key. 

2. V: The new value for V. 

 

 

Figure 10: HMAC_DRBG_Update Function 
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HMAC_DRBG Update Process: 
1. K = HMAC (K, V || 0x00 || provided_data). 

2. V = HMAC (K, V). 

3. If (provided_data = Null), then return K and V. 

4. K = HMAC (K, V || 0x01 || provided_data). 

5. V = HMAC (K, V). 

6. Return K and V. 

10.1.2.3 Instantiation of HMAC_DRBG 

Notes for the instantiate function specified in Section 9.1: 

The instantiation of HMAC_DRBG requires a call to the Instantiate_function 
specified in Section 9.1. Process step 9 of that function calls the instantiate algorithm 
specified in this section. The values of highest_supported_security_strength and min 
_length are provided in Table 2 of Section 10.1. The contents of the internal state are 
provided in Section 10.1.2.1. 

The instantiate algorithm: 

Let HMAC_DRBG_Update be the function specified in Section 10.1.2.2. The output 
block length (outlen) is provided in Table 2 of Section 10.1. 

The following process or its equivalent shall be used as the instantiate algorithm for 
this DRBG mechanism (see step 9 of the instantiate process in Section 9.1): 

HMAC_DRBG_Instantiate_algorithm (entropy_input, nonce, 
personalization_string, security_strength):  
1. entropy_input: The string of bits obtained from the randomness source. 

2. nonce: A string of bits as specified in Section 8.6.7. 

3. personalization_string: The personalization string received from the consuming 
application. Note that the length of the personalization_string may be zero. 

4. security_strength: The security strength for the instantiation. This parameter is 
optional for HMAC_DRBG, since it is not used. 

Output:  
1. initial_working_state: The inital values for V, Key and reseed_counter (see 

Section 10.1.2.1). 

HMAC_DRBG Instantiate Process: 
1.   seed_material = entropy_input || nonce || personalization_string. 

2. Key = 0x00 00...00. Comment: outlen bits. 

3. V = 0x01 01...01. Comment: outlen bits. 
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Comment: Update Key and V. 

4. (Key, V) = HMAC_DRBG_Update (seed_material, Key, V). 

5. reseed_counter = 1. 

6. Return V, Key and reseed_counter as the initial_working_state. 

10.1.2.4  Reseeding an HMAC_DRBG Instantiation 

Notes for the reseed function specified in Section 9.2: 

The reseeding of an HMAC_DRBG instantiation requires a call to the 
Reseed_function specified in Section 9.2. Process step 6 of that function calls the 
reseed algorithm specified in this section. The values for min_length are provided in 
Table 2 of Section 10.1. 

The reseed algorithm: 

Let HMAC_DRBG_Update be the function specified in Section 10.1.2.2. The 
following process or its equivalent shall be used as the reseed algorithm for this DRBG 
mechanism (see step 6 of the reseed process in Section 9.2): 

HMAC_DRBG_Reseed_algorithm (working_state, entropy_input, additional_input):  
1. working_state: The current values for V, Key and reseed_counter (see Section 

10.1.2.1).  

2. entropy_input: The string of bits obtained from the randomness source. 

3. additional_input: The additional input string received from the consuming 
application. Note that the length of the additional_input string may be zero. 

Output:  
1. new_working_state: The new values for V, Key and reseed_counter.  

HMAC_DRBG Reseed Process: 
1. seed_material = entropy_input || additional_input. 
2. (Key, V) = HMAC_DRBG_Update (seed_material, Key, V). 

3. reseed_counter = 1. 

4. Return V, Key and reseed_counter as the new_working_state. 

10.1.2.5  Generating Pseudorandom Bits Using HMAC_DRBG 

Notes for the generate function specified in Section 9.3: 

The generation of pseudorandom bits using an HMAC_DRBG instantiation requires a 
call to the Generate_function specified in Section 9.3. Process step 8 of that function 
calls the generate algorithm specified in this section. The values for 
max_number_of_bits_per_request and outlen are provided in Table 2 of Section 10.1. 

The generate algorithm : 
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Let HMAC be the keyed hash function specified in FIPS 198 using the hash function 
selected for the DRBG mechanism. The value for reseed_interval is defined in Table 2 
of Section 10.1. 

The following process or its equivalent shall be used as the generate algorithm for this 
DRBG mechanism (see step 8 of the generate process in Section 9.3): 

HMAC_DRBG_Generate_algorithm (working_state, requested_number_of_bits, 
additional_input):  

1. working_state: The current values for V, Key and reseed_counter (see Section 
10.1.2.1).  

2. requested_number_of_bits: The number of pseudorandom bits to be returned to 
the generate function.  

3. additional_input: The additional input string received from the consuming 
application. Note that the length of the additional_input string may be zero. 

Output:  
1. status: The status returned from the function. The status will indicate 

SUCCESS, or indicate that a reseed is required before the requested 
pseudorandom bits can be generated.  

2. returned_bits: The pseudorandom bits to be returned to the generate function. 

3. new_working_state: The new values for V, Key and reseed_counter.  

HMAC_DRBG Generate Process: 
1. If reseed_counter > reseed_interval, then return an indication that a reseed is 

required. 

2. If additional_input ≠ Null, then (Key, V) =  
HMAC_DRBG_Update (additional_input, Key, V). 

3. temp = Null. 
4. While (len (temp) < requested_number_of_bits) do: 

4.1 V = HMAC (Key, V). 

4.2 temp = temp || V. 

5. returned_bits = leftmost (temp, requested_number_of_bits). 

6. (Key, V) = HMAC_DRBG_Update (additional_input, Key, V). 

7. reseed_counter = reseed_counter + 1. 

8. Return SUCCESS, returned_bits, and the new values of Key, V and 
reseed_counter as the new_working_state). 
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10.2 DRBG Mechanism Based on Block Ciphers 

A block cipher DRBG is based on a block 
cipher algorithm. The block cipher DRBG 
mechanism specified in this 
Recommendation has been designed to use 
any approved block cipher algorithm and 
may be used by consuming applications 
requiring various security strengths, 
providing that the appropriate block cipher 
algorithm and key length are used, and 
sufficient entropy is obtained for the seed.  

The maximum security strength that can be 
supported by the DRBG is the security 
strength of the block cipher and key size 
used; the security strengths for the block 
ciphers and key sizes are provided in SP 
800-57. 

10.2.1 CTR_DRBG 

CTR_DRBG uses an approved block 
cipher algorithm in the counter mode as 
specified in SP 800-38A, but allows the 
counter field to be a subset of the input 
block, as specified in SP 800-38D. Note 
that for TDEA, the input and output block 
lengths are 64 bits, and for AES, the lengths 
are 128 bits. 

The same block cipher algorithm and key length shall be used for all block cipher 
operations of this DRBG. The block cipher algorithm and key length shall meet or exceed 
the security requirements of the consuming application.  

CTR_DRBG is specified using an internal function (CTR_DRBG_Update). Figure 11 
depicts the CTR_DRBG_Update function. This function is called by the instantiate, 
generate and reseed algorithms to adjust the internal state when new entropy or additional 
input is provided, as well as to update the internal state after pseudorandom bits are 
generated. Figure 12 depicts the CTR_DRBG in three stages. The operations in the top 
portion of the figure are only performed if the additional input is not null.  

Table 3 specifies the values that shall be used for the function envelopes and CTR_DRBG 
mechanism.  

 

 

Figure 11: CTR_DRBG Update Function 
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Table 3: Definitions for the CTR_DRBG 

 3 Key TDEA AES-
128 

AES-
192 

AES-
256 

Supported security strengths See SP 800-57 

highest_supported_security_strength See SP 800-57 

Input and output block length 
(blocklen) 

64 128 128 128 

Counter field length (ctr_len) 4 ≤ ctr_len ≤ blocklen 

Key length (keylen) 168 128 192 256 

Required minimum entropy for 
instantiate and reseed 

security_strength 

Seed length (seedlen = outlen + keylen) 232 256 320 384 

If a derivation function is used:  

Minimum entropy input length 
(min _length)  

security_strength 

Maximum entropy input length 
(max _length)  

≤ 235 bits 

Maximum personalization string 
length 
(max_personalization_string_length)  

≤ 235 bits 

Maximum additional_input length 
(max_additional_input_length) 

≤ 235 bits 

If a derivation function is not used:  

Minimum entropy input length 
(min _length = blocklen + keylen) 

seedlen 

Maximum entropy input length 
(max _length) (blocklen + keylen) 

seedlen 

Maximum personalization string 
length 
(max_personalization_string_length)  

seedlen 

Maximum additional_input length 
(max_additional_input_length) 

seedlen 
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 3 Key TDEA AES-
128 

AES-
192 

AES-
256 

max_number_of_bits_per_request 
(for B = (2ctr_len - 4) × blocklen) 

≤ min(B, 213 ) ≤ min(B, 219)  

Number of requests between reseeds 
(reseed_interval) 

≤ 232  ≤ 248  

 

Note that the claimed security 
strength for CTR_DRBG 
depends on limiting the total 
number of generate requests and 
the bits provided per generate 
request according to the table 
above.  Without these limits, it 
becomes possible, in principle, 
for an attacker to observe 
enough outputs from 
CTR_DRBG to distinguish its 
outputs from ideal random bits. 

The CTR_ DRBG may be 
implemented to use the block 
cipher derivation function 
specified in Section 10.3.2 
during instantiation and 
reseeding.  However, the DRBG 
mechanism  is specified to allow 
an implementation tradeoff with 
respect to the use of this 
derivation function. The use of 
the derivation function is 
optional if either an approved 
RBG or an entropy source 
provide full entropy output 
when entropy input is requested 
by the DRBG mechanism. 

Otherwise, the derivation 
function shall be used. Table 3 
provides the lengths required for 
the entropy_input, 
personalization_string and 
additional_input for each case. 

 

 

 
Figure 12: CTR-DRBG 



NIST SP 800-90A, Rev. 1  November 2014 

53  

 

When using TDEA as the selected block cipher algorithm, the keys shall be handled as 64-
bit blocks containing 56 bits of key and 8 bits of parity as specified for the TDEA engine 
specified in SP 800-67. 

10.2.1.1  CTR_DRBG Internal State 

The internal state for the CTR_DRBG consists of: 

1. The working_state: 

a. The value V of blocklen bits, which is updated each time another blocklen bits 
of output are produced. 

b. The keylen-bit Key, which is updated whenever a predetermined number of 
output blocks are generated. 

c. A counter (reseed_counter) that indicates the number of requests for 
pseudorandom bits since instantiation or reseeding. 

2. Administrative information: 

a. The security_strength of the DRBG instantiation. 

b. A prediction_resistance_flag that indicates whether or not a prediction 
resistance capability is required for the DRBG instantiation. 

The values of V and Key are the critical values of the internal state upon which the security 
of this DRBG mechanism depends (i.e., V and Key are the “secret values” of the internal 
state). 

10.2.1.2  The Update Function (CTR_DRBG_Update) 

The CTR_DRBG_Update function updates the internal state of the CTR_DRBG using 
the provided_data. The values for blocklen, keylen and seedlen are provided in Table 3 of 
Section 10.2.1. The value of ctr_len is known by an implementation. The block cipher 
operation in step 2.2 of the CTR_DRBG_UPDATE process uses the selected block cipher 
algorithm. The specification of Block_Encrypt is discussed in Section 10.3.3. 

The following or an equivalent process shall be used as the CTR_DRBG_Update 
function. 

CTR_DRBG_Update (provided_data, Key, V):  
1. provided_data: The data to be used. This must be exactly seedlen bits in length; 

this length is guaranteed by the construction of the provided_data in the 
instantiate, reseed and generate functions. 

2. Key: The current value of Key. 

3. V: The current value of V. 

Output:  
1. K: The new value for Key. 
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2. V: The new value for V. 

CTR_DRBG_Update Process: 
1. temp = Null. 
2. While (len (temp) < seedlen) do 

2.1 If ctr_len < blocklen 

 2.1.1 inc = (rightmost (V, ctr_len) + 1) mod 2ctr_len. 

2.1.2 V = leftmost (V, blocklen-ctr_len) || inc.  

 Else 

 2.1.2 V = (V+1) mod 2blocklen
. 

2.2 output_block = Block_Encrypt (Key, V). 

2.3 temp = temp || ouput_block. 

3. temp = leftmost (temp,  seedlen). 

4 temp = temp ⊕ provided_data. 
5. Key = leftmost (temp,  keylen). 
6. V = rightmost (temp,  blocklen). 
7. Return the new values of Key and V. 

10.2.1.3  Instantiation of CTR_DRBG 

Notes for the instantiate function specified in Section 9.1: 

The instantiation of CTR_DRBG requires a call to the Instantiate_function specified 
in Section 9.1. Process step 9 of that function calls the instantiate algorithm specified in 
this section. The values of highest_supported_security_strength and min_length are 
provided in Table 3 of Section 10.2.1. The contents of the internal state are provided in 
Section 10.2.1.1. 

The instantiate algorithm: 

For this DRBG mechanism, there are two cases for processing. In each case, let 
CTR_DRBG_Update be the function specified in Section 10.2.1.2. The output block 
length (blocklen), key length (keylen), seed length (seedlen) and security_strengths for 
the block cipher algorithms are provided in Table 3 of Section 10.2.1.  

10.2.1.3.1 Instantiation a Derivation Function is Not Used 

When instantiation is performed using this method, full-entropy input is required, and a 
nonce is not used. The following process or its equivalent shall be used as the instantiate 
algorithm for this DRBG mechanism: 

CTR_DRBG_Instantiate_algorithm (entropy_input, personalization_string, 
security_strength):  
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1. entropy_input: The string of bits obtained from the randomness source. 

2. personalization_string: The personalization string received from the consuming 
application. Note that the length of the personalization_string may be zero. 

3. security_strength: The security strength for the instantiation. This parameter is 
optional for CTR_DRBG. 

Output:  
1. initial_working_state: The inital values for V, Key, and reseed_counter (see 

Section 10.2.1.1). 

CTR_DRBG Instantiate Process: 
1. temp = len (personalization_string). 

Comment: Ensure that the length of the 
personalization_string is exactly seedlen bits. 
The maximum length was checked in Section 
9.1, processing step 3, using Table 3 to define 
the maximum length. 

2. If (temp < seedlen), then personalization_string = personalization_string || 
0seedlen - temp. 

3. seed_material = entropy_input ⊕ personalization_string. 
4. Key = 0keylen. Comment: keylen bits of zeros. 

5. V = 0blocklen. Comment: blocklen bits of zeros. 

6. (Key, V) = CTR_DRBG_Update (seed_material, Key, V). 

7. reseed_counter = 1. 

8. Return V, Key, and reseed_counter as the initial_working_state. 

10.2.1.3.2  Instantiation When a Derivation Function is Used 

When instantiation is performed using this method, the entropy input may or may not have 
full entropy; in either case, a nonce is required. 

Let df be a derivation function specified in Section 10.3. When instantiation is performed 
using this method, a nonce is required, whereas using the method in Section 10.2.1.3.1 
does not require a nonce, since full entropy is provided when using that method. 

The following process or its equivalent shall be used as the instantiate algorithm for this 
DRBG mechanism: 

CTR_DRBG_Instantiate_algorithm (entropy_input, nonce, personalization_string, 
security_strength):  
1. entropy_input: The string of bits obtained from the randomness source. 

2. nonce: A string of bits as specified in Section 8.6.7. 
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3. personalization_string: The personalization string received from the consuming 
application. Note that the length of the personalization_string may be zero. 

4. security_strength: The security strength for the instantiation. This parameter is 
optional for CTR_DRBG, since it is not used. 

Output:  
1. initial_working_state: The inital values for V, Key, and reseed_counter (see 

Section 10.2.1.1). 

CTR_DRBG Instantiate Process: 
1. seed_material = entropy_input || nonce || personalization_string. 

Comment: Ensure that the length of the 
seed_material is exactly seedlen bits. 

2. seed_material = df (seed_material, seedlen).  
3. Key = 0keylen. Comment: keylen bits of zeros. 

4. V = 0blocklen. Comment: blocklen bits of zeros. 

5. (Key, V) = CTR_DRBG_Update (seed_material, Key, V). 

6. reseed_counter = 1. 

7. Return V, Key, and reseed_counter as the initial_working_state. 

10.2.1.4  Reseeding a CTR_DRBG Instantiation 

Notes for the reseed function specified in Section 9.2: 

The reseeding of a CTR_DRBG instantiation requires a call to the Reseed_function 
specified in Section 9.2. Process step 6 of that function calls the reseed algorithm 
specified in this section. The values for min _length are provided in Table 3 of Section 
10.2.1. 

The reseed algorithm: 

For this DRBG mechanism, there are two cases for processing. In each case, let 
CTR_DRBG_Update be the function specified in Section 10.2.1.2. The seed 
length (seedlen) is provided in Table 3 of Section 10.2.1.  

10.2.1.4.1 Reseeding When a Derivation Function is Not Used 

When reseeding is performed using this method, full-entropy input is required. 

The following process or its equivalent shall be used as the reseed algorithm for this 
DRBG mechanism (see step 6 of the reseed process in Section 9.2):  

CTR_DRBG_Reseed_algorithm (working_state, entropy_input, additional_input):  
1. working_state: The current values for V, Key and reseed_counter (see Section 

10.2.1.1).  
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2. entropy_input: The string of bits obtained from the randomness source. 

3. additional_input: The additional input string received from the consuming 
application. Note that the length of the additional_input string may be zero. 

Output:  
1. new_working_state: The new values for V, Key, and reseed_counter. 

CTR_DRBG Reseed Process: 
1. temp = len (additional_input). 

Comment: Ensure that the length of the 
additional_input is exactly seedlen bits. The 
maximum length was checked in Section 9.2, 
processing step 2, using Table 3 to define the 
maximum length. 

2. If (temp < seedlen), then additional_input = additional_input || 0seedlen - temp. 

3. seed_material = entropy_input ⊕ additional_input. 
4. (Key, V) = CTR_DRBG_Update (seed_material, Key, V). 

5. reseed_counter = 1. 

6. Return V, Key and reseed_counter as the new_working_state. 

10.2.1.4.2  Reseeding When a Derivation Function is Used 

Let df be the derivation function specified in Section 10.3. 

The following process or its equivalent shall be used as the reseed algorithm for this 
DRBG mechanism (see reseed process step 6 of Section 9.2):  

CTR_DRBG_Reseed_algorithm (working_state, entropy_input, additional_input)  
1. working_state: The current values for V, Key and reseed_counter (see Section 

10.2.1.1).  

2. entropy_input: The string of bits obtained from the randomness source. 

3. additional_input: The additional input string received from the consuming 
application. Note that the length of the additional_input string may be zero. 

Output:  
1. new_working_state: The new values for V, Key, and reseed_counter. 

CTR_DRBG Reseed Process: 
1. seed_material = entropy_input || additional_input. 

Comment: Ensure that the length of the 
seed_material is exactly seedlen bits. 

2. seed_material = df (seed_material, seedlen).  
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3. (Key, V) = CTR_DRBG_Update (seed_material, Key, V). 

4. reseed_counter = 1. 

5. Return V, Key, and reseed_counter as the new_working_state. 

10.2.1.5  Generating Pseudorandom Bits Using CTR_DRBG 

Notes for the generate function specified in Section 9.3: 

The generation of pseudorandom bits using a CTR_DRBG instantiation requires a call 
to the Generate_function specified in Section 9.3. Process step 8 of that function calls 
the generate algorithm specified in this section. The values for 
max_number_of_bits_per_request and max_additional_input_length, and blocklen are 
provided in Table 3 of Section 10.2.1. If the derivation function is not used, then the 
maximum allowed length of additional_input = seedlen. 

For this DRBG mechanism, there are two cases for the processing. For each case, let 
CTR_DRBG_Update be the function specified in Section 10.2.1.2, and let 
Block_Encrypt be the function specified in Section 10.3.3. The seed length (seedlen) 
and the value of reseed_interval are provided in Table 3 of Section 10.2.1. The value of 
ctr_len is known by an implementation. 

10.2.1.5.1 Generating Pseudorandom Bits When a Derivation Function is 
Not Used  

This method of generating bits is used when a derivation function is not used by an 
implementation. 

The following process or its equivalent shall be used as the generate algorithm for this 
DRBG mechanism (see step 8 of the generate process in Section 9.3.3):  

CTR_DRBG_Generate_algorithm (working_state, requested_number_of_bits, 
additional_input):  
1. working_state: The current values for V, Key, and reseed_counter (see Section 

10.2.1.1).  

2. requested_number_of_bits: The number of pseudorandom bits to be returned to 
the generate function. 

3. additional_input: The additional input string received from the consuming 
application. Note that the length of the additional_input string may be zero. 

Output:  
1. status: The status returned from the function. The status will indicate 

SUCCESS, or indicate that a reseed is required before the requested 
pseudorandom bits can be generated.  

2. returned_bits: The pseudorandom bits returned to the generate function. 

3. working_state: The new values for V, Key, and reseed_counter.  
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CTR_DRBG Generate Process: 
1. If reseed_counter  > reseed_interval, then return an indication that a reseed is 

required. 

2. If (additional_input ≠ Null), then 
Comment: Ensure that the length of the 
additional_input is exactly seedlen bits. The 
maximum length was checked in Section 
9.3.3, processing step 4, using Table 3 to 
define the maximum length. If the length of 
the additional input is < seedlen, pad with 
zero bits. 

2.1 temp = len (additional_input). 
2.2 If (temp < seedlen), then  

additional_input = additional_input || 0seedlen - temp. 

2.3 (Key, V) = CTR_DRBG_Update (additional_input, Key, V). 

Else additional_input = 0seedlen. 

3. temp = Null. 
4. While (len (temp) < requested_number_of_bits) do: 

4.1 If ctr_len < blocklen 

 4.1.1 inc = (rightmost (V, ctr_len) + 1) mod 2ctr_len. 

4.1.2 V = leftmost (V, blocklen-ctr_len) || inc.  

 Else 

 4.1.2 V = (V+1) mod 2blocklen
. 

4.2 output_block = Block_Encrypt (Key, V). 

4.3 temp = temp || output_block. 

5. returned_bits = leftmost (temp,  requested_number_of_bits). 

Comment: Update for backtracking 
resistance. 

6. (Key, V) = CTR_DRBG_Update (additional_input, Key, V). 

7. reseed_counter = reseed_counter + 1. 

8. Return SUCCESS and returned_bits; also return Key, V, and reseed_counter as 
the new_working_state. 
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10.2.1.5.2 Generating Pseudorandom Bits When a Derivation Function is 
Used  

This method of generating bits is used when a derivation function is used by an 
implementation. 

Let df be a derivation function specified in Section 10.3. 

The following process or its equivalent shall be used as the generate algorithm for this 
DRBG mechanism (see step 8 of the generate process in Section 9.3.3):  

CTR_DRBG_Generate_algorithm (working_state, requested_number_of_bits, 
additional_input):  
1. working_state: The current values for V, Key, and reseed_counter (see Section 

10.2.1.1).  

2. requested_number_of_bits: The number of pseudorandom bits to be returned to 
the generate function. 

3. additional_input: The additional input string received from the consuming 
application. Note that the length of the additional_input string may be zero. 

Output:  
1. status: The status returned from the function. The status will indicate 

SUCCESS, or indicate that a reseed is required before the requested 
pseudorandom bits can be generated.  

2. returned_bits: The pseudorandom bits returned to the generate function. 
3. working_state: The new values for V, Key, and reseed_counter. 

CTR_DRBG Generate Process: 
1. If reseed_counter  > reseed_interval, then return an indication that a reseed is 

required. 

2. If (additional_input ≠ Null), then 

2.1 additional_input = Block_Cipher_df (additional_input, seedlen). 

2.2 (Key, V) = CTR_DRBG_Update (additional_input, Key, V). 

Else additional_input = 0seedlen. 

3. temp = Null. 
4. While (len (temp) < requested_number_of_bits) do: 

4.1 If ctr_len < blocklen 

 4.1.1 inc = (rightmost (V, ctr_len) + 1) mod 2ctr_len. 

4.1.2 V = leftmost (V, blocklen-ctr_len) || inc.  

 Else 
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 4.1.2 V = (V+1) mod 2blocklen
. 

4.2 output_block = Block_Encrypt (Key, V). 

4.3 temp = temp || output_block. 

5. returned_bits = leftmost (temp, requested_number_of_bits). 

Comment: Update for backtracking 
resistance. 

6. (Key, V) = CTR_DRBG_Update (additional_input, Key, V). 

7. reseed_counter = reseed_counter + 1. 

8. Return SUCCESS and returned_bits; also return Key, V, and reseed_counter as 
the new_working_state. 

10.3  Auxiliary Functions 

Derivation functions are internal functions that are used during DRBG instantiation and 
reseeding to either derive internal state values or to distribute entropy throughout a 
bitstring. Two methods are provided. One method is based on hash functions (see Section 
10.3.1), and the other method is based on block cipher algorithms (see 10.3.2). The block 
cipher derivation function specified in Section 10.3.2 uses a BCC function and a 
Block_Encrypt call that are discussed in Section 10.3.3. 

The presence of these derivation functions in this Recommendation does not implicitly 
approve these functions for any other application. 

10.3.1 Derivation Function Using a Hash Function (Hash_df) 

This derivation function is used by the Hash_DRBG specified Section 10.1.1. The hash-
based derivation function hashes an input string and returns the requested number of bits. 
Let Hash be the hash function used by the DRBG mechanism, and let outlen be its output 
length.  

The following or an equivalent process shall be used to derive the requested number of 
bits.  

Hash_df (input_string, no_of_bits_to_return):  
1. input_string: The string to be hashed. 

2. no_of_bits_to_return: The number of bits to be returned by Hash_df. The 
maximum length (max_number_of_bits) is implementation dependent, but shall be 
less than  or equal to (255 × outlen). no_of_bits_to_return is represented as a 32-bit 
integer. 

Output:  
1. status: The status returned from Hash_df. The status will indicate SUCCESS or 

ERROR_FLAG. 
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2. requested_bits : The result of performing the Hash_df. 

Hash_df Process: 
1. temp = the Null string. 

2. . 

3. counter = an 8-bit binary value representing the integer "1". 

4. For i = 1 to len do 

Comment : In step 4.1, no_of_bits_to_return 
is used as a 32-bit string. 

4.1 temp = temp || Hash (counter || no_of_bits_to_return || input_string). 

4.2 counter = counter + 1. 

5. requested_bits = leftmost (temp, no_of_bits_to_return). 

6. Return SUCCESS and requested_bits. 

10.3.2 Derivation Function Using a Block Cipher Algorithm 
(Block_Cipher_df) 

This derivation function is used by the CTR_DRBG that is specified in Section 10.2. BCC 
and Block_Encrypt are discussed in Section 10.3.3. Let outlen be its output block length, 
which is a multiple of 8 bits for the approved block cipher algorithms, and let keylen be 
the key length. 

The following or an equivalent process shall be used to derive the requested number of 
bits. 

Block_Cipher_df (input_string, no_of_bits_to_return): 
1. input_string: The string to be operated on. This string shall be a multiple of 8 bits. 

2. no_of_bits_to_return: The number of bits to be returned by Block_Cipher_df. The 
maximum length (max_number_of_bits) is 512 bits for the currently approved 
block cipher algorithms. 

Output: 
1. status: The status returned from Block_Cipher_df. The status will indicate 

SUCCESS or ERROR_FLAG. 

2. requested_bits : The result of performing the Block_Cipher_df. 

Block_Cipher_df Process: 
1. If (number_of_bits_to_return > max_number_of_bits), then return an 

ERROR_FLAG and a Null string. 
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2. L = len (input_string)/8. Comment: L is the bitstring represention of 
the integer resulting from len (input_string)/8. 
L shall be represented as a 32-bit integer. 

3. N = number_of_bits_to_return/8. Comment : N is the bitstring represention of 
the integer resulting from 
number_of_bits_to_return/8. N shall be 
represented as a 32-bit integer. 

Comment: Prepend the string length and the 
requested length of the output to the 
input_string. 

4. S = L || N || input_string || 0x80. 

Comment : Pad S with zeros, if necessary. 

5. While (len (S) mod outlen) ≠ 0, S = S || 0x00.  
Comment : Compute the starting value. 

6. temp = the Null string. 

7. i = 0. Comment : i shall be represented as a 32-bit 
integer, i.e., len (i) = 32.  

8. K = leftmost (0x00010203...1D1E1F, keylen). 

9. While len (temp) < keylen + outlen, do 

9.1 IV = i || 0outlen - len (i). Comment: The 32-bit integer represenation of 
i is padded with zeros to outlen bits. 

9.2 temp = temp || BCC (K, (IV || S)). 

9.3 i = i + 1. 

Comment: Compute the requested number of 
bits. 

10. K = leftmost (temp,  keylen). 

11. X = Next outlen bits of temp. 

12. temp = the Null string. 

13. While len (temp) < number_of_bits_to_return, do 

13.1 X = Block_Encrypt (K, X). 

13.2 temp = temp || X. 

14. requested_bits = leftmost (temp,  number_of_bits_to_return). 

15. Return SUCCESS and requested_bits.  
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10.3.3    BCC and Block_Encrypt 

Block_Encrypt is used for convenience in the specification of the BCC function. This 
function is not specifically defined in this Recommendation, but has the following 
meaning: 

Block_Encrypt: A basic encryption operation that uses the selected block cipher 
algorithm. The function call is: 

output_block = Block_Encrypt (Key, input_block) 

For TDEA, the basic encryption operation is called the forward cipher operation (see 
SP 800-67); for AES, the basic encryption operation is called the cipher operation (see 
FIPS 197]. The basic encryption operation is equivalent to an encryption operation on a 
single block of data using the ECB mode. 

For the BCC function, let outlen be the length of the output block of the block cipher 
algorithm to be used. 

The following or an equivalent process shall be used to derive the requested number of 
bits.  

BCC (Key, data): 
1. Key: The key to be used for the block cipher operation. 

2. data: The data to be operated upon. Note that the length of data must be a multiple 
of outlen. This is guaranteed by Block_Cipher_df process steps 4 and 8.1 in 
Section 10.3.2. 

Output: 
1. output_block: The result to be returned from the BCC operation. 

BCC Process: 
1. chaining_value = 0outlen. Comment: Set the first chaining value to outlen zeros. 

2.  n = len (data)/outlen. 

3. Starting with the leftmost bits of data, split the data into n blocks of outlen bits 
each, forming block1 to blockn.  

4. For i = 1 to n do 

4.1 input_block = chaining_value ⊕ blocki .  
4.2 chaining_value = Block_Encrypt (Key, input_block). 

5. output_block = chaining_value. 

6. Return output_block.     
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11 Assurance 

A user of a DRBG employed for cryptographic purposes requires assurance that the 
generator actually produces (pseudo) random and unpredictable bits. The user needs 
assurance that the design of the generator, its implementation and its use to support 
cryptographic services are adequate to protect the user's information. In addition, the user 
requires assurance that the generator continues to operate correctly.  

The design of each DRBG mechanism in this Recommendation has received an evaluation 
of its security properties prior to its selection for inclusion in this Recommendation.  

An implementer selects a DRBG mechanism (e.g., HMAC_DRBG), an appropriate 
cryptographic primitive (e.g., SHA-256 or SHA-512), the DRBG functions to be used (i.e., 
instantiate, generate and/or reseed), and will determine whether or not the DRBG will be 
distributed (see Section 8.5). Each choice of components effectively defines a different 
DRBG type. For example, an implementation of HMAC_DRBG using SHA-256 is 
considered to be a different DRBG than HMAC_DRBG using SHA-512.  

 An implementation shall be validated for conformance to this Recommendation by a 
NVLAP-accredited laboratory (see Section 11.2). Such validations provide a higher level 
of assurance that the DRBG mechanism is correctly implemented.  

Health tests on the DRBG mechanism shall be implemented within a DRBG mechanism 
boundary or sub-boundary in order to determine that the process continues to operate as 
designed and implemented. See Section 11.3 for further information. 

A cryptographic module containing a DRBG mechanism shall be validated (see FIPS 140). 
The consuming application or cryptographic service that uses a DRBG mechanism should 
also be validated and periodically tested for continued correct operation. However, this 
level of testing is outside the scope of this Recommendation. 

Note that any entropy input used for testing (either for validation testing or health testing) 
may be publicly known. Therefore, entropy input used for testing shall not knowingly be 
used for normal operational use. 

11.1  Minimal Documentation Requirements 

A set of documentation shall be developed that will provide assurance to users and 
validators that the DRBG mechanisms in this Recommendation have been implemented 
properly. Much of this documentation may be placed in a user manual. This documentation 
shall consist of the following as a minimum: 

• Document the method for obtaining entropy input. 

• Document how the implementation has been designed to permit implementation 
validation and health testing. 

• Document the type of DRBG mechanism (e.g., CTR_DRBG), and the 
cryptographic primitives used (e.g., AES-128, SHA-256). 
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• Document the security strengths supported by the implementation. 

• Document features supported by the implemention (e.g., prediction resistance, 
personalization string, additional input, etc.). 

• If DRBG mechanism functions are distributed, specify the mechanisms that are 
used to protect the confidentiality and integrity of the internal state or parts of the 
internal state that are transferred between the distributed DRBG mechanism sub-
boundaries (i.e., provide documentation about the secure channel). 

• In the case of the CTR_DRBG, indicate whether a derivation function is provided. 
If a derivation function is not used, document that the implementation can only be 
used when full entropy input is available. 

• Document any support functions other than health testing. 

• If periodic testing is performed for the generate function, document the intervals 
and provide a justification for the selected intervals (see Section 11.3.3). 

• Document whether the DRBG functions can be tested on demand. 

• Document how the integrity of the health tests will be determined subsequent to 
implementation validation testing. 

11.2  Implementation Validation Testing 

A DRBG mechanism shall be tested for conformance to this Recommendation. A DRBG 
mechanism shall be designed to be tested to ensure that the product is correctly 
implemented. A testing interface shall be available for this purpose in order to allow the 
insertion of input and the extraction of output for testing.  

Implementations to be validated shall include the following: 

• The documentation specified in Section 11.1. 

• Any documentation or results required in derived test requirements. 

11.3 Health Testing 

A DRBG implementation shall perform self-tests to obtain assurance that the DRBG 
continues to operate as designed and implemented (health testing).  The testing function(s) 
within a DRBG mechanism boundary (or sub-boundary) shall test each DRBG mechanism 
function within that boundary (or sub-boundary), with the possible exception of the test 
function itself. A DRBG implementation may optionally perform other self-tests for 
DRBG functionality in addition to the tests specified in this Recommendation. 

All data output from the DRBG mechanism boundary (or sub-boundary) shall be inhibited 
while these tests are performed. The results from known-answer-tests (see Section 11.3.1) 
shall not be output as random bits during normal operation.  
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11.3.1 Known Answer Testing  

Known-answer testing shall be conducted as specified below. A known-answer test 
involves operating the DRBG mechanism with data for which the correct output is already 
known, and determining if the calculated output equals the expected output (the known 
answer).  The test fails if the calculated output does not equal the known answer. In this 
case, the DRBG mechanism shall enter an error state and output an error indicator (see 
Section 11.3.6). 

Generalized known-answer testing is specified in Sections 11.3.2 through 11.3.5. With the 
possible exception of the test function itself, testing shall be performed on all implemented 
DRBG mechanism functions within a DRBG boundary (if all functions are in the same 
device) or sub-boundary (if functions are distributed); see Section 8.5. Documentation 
shall be provided that addresses the continued integrity of the health tests (see Section 
11.1). 

Known-answer tests shall be conducted on each DRBG function within a boundary or sub-
boundary prior to the first-use of that DRBG (e.g., during the power-on self-testing 
sequence). 

11.3.2 Testing the Instantiate Function 

Known-answer tests on the instantiate function shall use a security strength that will be 
available during normal operations. If prediction resistance has been implemented, the 
prediction_resistance_flag shall also be used. A representative fixed value and length of 
the entropy_input, nonce and personalization_string (if supported) shall be used; the value 
of the entropy_input used during testing shall not be intentionally reused during normal 
operations (either by the instantiate or the reseed functions). Error handling shall also be 
tested, including whether or not the instantiate function handles an error from the 
randomness source correctly.  
If the values used during the test produce the expected results, and errors are handled 
correctly, then the instantiate function may be used during normal operation. 

An implementation should provide a capability to test the instantiate function on demand. 

11.3.3 Testing the Generate Function 

During generate-function testing, a representative fixed value and length for the 
requested_number_of_bits and additional_input (if supported) shall be used. If prediction 
resistance is supported, then the use of the prediction_resistance_request parameter shall 
be tested. The error handling for each input parameter shall be tested, and testing shall 
include setting the reseed_counter to meet or exceed the reseed_interval in order to check 
that the implementation is reseeded or that the DRBG is uninstantiated, as appropriate (see 
Section 9.3.1). 

If the values used during the test produce the expected results, and errors are handled 
correctly, then the generate function may be used during normal operation. 

Bits generated during health testing shall not be output as pseudorandom bits. 
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An implementation should provide a capability to test the generate function on demand. 

In addition to testing the generate function before first use (see Section 11.3.1), known-
answer tests should be performed at reasonable intervals, as defined by the implementer. 

11.3.4 Testing the Reseed Function 

Known-answer testing of the reseed function shall use the security_strength in the internal 
state of the (testing) instantiation to be reseeded. A representative value of the 
entropy_input and additional_input (if supported) shall be used (see Sections 8.3 and 10). 
If prediction resistance for the reseed function is supported, then the use of the 
prediction_resistance_request parameter shall be tested. Error handling shall also be 
tested, including an error in obtaining the entropy_input (e.g., the randomness source is 
unavailable). 

If the values used during the test produce the expected results, and errors are handled 
correctly, then the reseed function may be used during normal operation. 

An implementation should provide a capability to test the reseed function on demand. 

11.3.5 Testing the Uninstantiate Function 

The uninstantiate function shall be tested whenever other functions are tested that reside in 
the same (sub)boundary as the uninstantiate function. Testing shall demonstrate that error 
handling is performed correctly, and the internal state has been zeroized.  

11.3.6 Error Handling 

The expected errors are indicated for each DRBG mechanism function (see Sections 9.1 - 
9.4) and for the derivation functions in Section 10.3. The error handling routines should 
indicate the type of error. 

11.3.6.1 Errors Encountered During Normal Operation 

Many errors that occur during normal operation may be caused by a consuming 
application’s improper DRBG request or possibly the current unavailability of entropy; 
these errors are indicated by “ERROR_FLAG” in the pseudocode. In these cases, the 
consuming application user is responsible for correcting the request within the limits of the 
user’s organizational security policy. For example, if a failure indicating an invalid, 
requested security strength is returned, a security strength higher than the DRBG or the 
DRBG instantiation can support has been requested. The user may reduce the requested 
security strength if the organization’s security policy allows the information to be 
protected using a lower security strength, or the user shall use an appropriately instantiated 
DRBG. 

Catastrophic errors (i.e., those errors indicated by the 
CATASTROPHIC_ERROR_FLAG in the pseudocode) detected during normal 
operation shall be treated in the same manner as an error detected during health testing 
(see Section 11.3.6.2). 
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11.3.6.2 Errors Encountered During Health Testing 

Errors detected during health testing shall be perceived as catastrophic DRBG failures.  

When a DRBG fails a health test or a catastrophic error is detected during normal 
operation, the DRBG shall enter an error state and output an error indicator. The DRBG 
shall not perform any instantiate, generate or reseed operations while in the error state, and 
pseudorandom bits shall not be output when an error state exists. When in an error state, 
user intervention (e.g., power cycling of the DRBG) shall be required to exit the error 
state, and the DRBG shall be re-instantiated before the DRBG can be used to produce 
pseudorandom bits. Examples of such errors include: 

• A test deliberately inserts an error, and the error is not detected, or 

• A result is returned from the instantiate, reseed or generate function that was not 
expected. 
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Appendix A: (Normative) Conversion and Auxilliary Routines 

A.1 Bitstring to an Integer 

Bitstring_to_integer (b1, b2,…, bn): 

1. b1, b2,…, bn The bitstring to be converted. 

Output:  
1. x The requested integer representation of the bitstring. 

Process: 
1. Let (b1, b2,…, bn) be the bits of b from leftmost to rightmost. 

2. . 

3. Return x. 

In this Recommendation, the binary length of an integer x is defined as the smallest integer 
n satisfying x < 2n.  

A.2 Integer to a Bitstring 

Integer_to_bitstring (x):  
1. x The non-negative integer to be converted. 

Output:  
1. b1, b2, ..., bn The bitstring representation of the integer x. 

Process: 
1. Let (b1, b2, ..., bn) represent the bitstring, where b1 = 0 or 1, and b1 is the most 

significant bit, while bn is the least significant bit. 

2. For any integer n that satisfies x < 2n, the bits bi shall satisfy:
 

. 

3. Return b1, b2, ..., bn. 

In this Recommendation, the binary length of the integer x is defined as the smallest 
integer n that satisfies x < 2n. 
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A.3 Integer to a Byte String 

Integer_to_byte_string (x):  
1. A non-negative integer x, and the intended length n of the byte string satisfying 

    28n > x. 

Output:  
1. A byte string O of length n bytes. 

Process: 
1. Let O1, O2,…, On be the bytes of O from leftmost to rightmost. 

2. The bytes of O shall satisfy: 

x = Σ 28(n-i)Oi 

for i = 1 to n. 
3. Return O. 

A.4 Byte String to an Integer 

Byte_string_to_integer (O):   
1. A byte string O of length n bytes. 

Output:    
1. A non-negative integer x. 

Process:  
1. Let O1, O2, …, On be the bytes of O from leftmost to rightmost. 

2. x is defined as follows: 

 x = Σ 28(n-i)Oi 
for i = 1 to n. 

3. Return x. 

A.5 Converting Random Bits into a Random Number 

In some cryptographic applications, sequences of random numbers are required (a0, a1, 
a2,…) where: 

i) Each integer ai satisfies 0 ≤ ai ≤ r-1, for some positive integer r (the range of the 
random numbers); 

ii) The equation ai = s holds, with probability almost exactly 1/r, for any i ≥ 0 and for 
any s (0 ≤ s ≤ r-1); 
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iii) Each value ai is statistically independent of any set of values aj (j ≠ i). 
Four techniques are specified for generating sequences of random numbers from sequences 
of random bits. 

If the range of the number required is a ≤ ai ≤ b, rather than 0 ≤ ai ≤ r-1, then a random 
number in the desired range can be obtained by computing ai + a, where ai is a random 
number in the range 0 ≤ ai ≤ b-a (that is, when r = b-a+1). 

A.5.1 The Simple Discard Method 

Let m be the number of bits needed to represent the value (r–1).  The following method 
may be used to generate the random number a: 

1. Use the random bit generator to generate a sequence of m random bits, (b0, b1, …, 
bm-1). 

2. Let  

3. If c < r then put a = c, else discard c and go to Step 1. 

This method produces a random number a with no skew (no bias).  A possible 
disadvantage of this method, in general, is that the time needed to generate such a random 
a is not a fixed length of time because of the conditional loop. 

The ratio r/2m is a measure of the efficiency of the technique, and this ratio will always 
satisfy 0.5 < r/2m ≤ 1.  If r/2m is close to 1, then the above method is simple and efficient.  
However, if r/2m is close to 0.5, then the simple discard method is less efficient, and the 
more complex method below is recommended. 

A.5. 2 The Complex Discard Method 

Choose a small positive integer t (the number of same-size random number outputs 
desired), and then let m be the number of bits in (rt –1).  This method may be used to 
generate a sequence of t random numbers (a0, a1, … , at-1): 

1. Use the random bit generator to generate a sequence of m random bits, (b0, b1, …, 
bm-1). 

2. Let . 

3. If c < rt , then 

let (a0, a1, …, at-1) be the unique sequence of values satisfying 0 ≤ ai ≤ r -1 such 

that  

else discard c and go to Step 1. 
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This method produces random numbers (a0, a1, … , at-1) with no skew.  A possible 
disadvantage of this method, in general, is that the time needed to generate these numbers 
is not a fixed length of time because of the conditional loop.  The complex discard method 
may have better overall performance than the simple discard method if many random 
numbers are needed.   

The ratio rt/2m is a measure of the efficiency of the technique, and this ratio will always 
satisfy 0.5 < rt/2m ≤ 1.  Hence, given r, it is recommended to choose t so that t is the 
smallest value such that rt/2m is close to 1.  For example, if r = 3, then choosing t = 3 
means that m = 5 (as rt is 27) and rt/m = 27/32 ≈ 0.84, and choosing t = 5 means that m = 8 
(as rt is 243) and rt/m = 243/256 ≈ 0.95.  The complex discard method coincides with the 
simple discard method when t = 1. 

A.5. 3 The Simple Modular Method 

Let m be the number of bits needed to represent the value (r–1), and let s be a security 
parameter. The following method may be used to generate one random number a: 

1. Use the random bit generator to generate a sequence of m+s random bits, (b0, b1, 
…, bm+s-1). 

2. Let . 

3. Let a=c mod r. 

The simple modular method can be coded to take constant time.  This method produces a 
random value with a negligible skew, that is, the probability that ai=w for any particular 
value of w (0 ≤ w ≤ r-1) is not exactly 1/r. However, for a large enough value of s, the 
difference between the probability that ai=w for any particular value of w and 1/r is 
negligible.  The value of s shall be greater than or equal to 64.  

A.5. 4 The Complex Modular Method 

Choose a small positive integer t (the number of same-size random number outputs 
desired) and a security parameter s; let m be the number of bits in (rt –1). The following 
method may be used to generate a sequence of t random numbers (a0, a1, …, at-1): 

1. Use the random bit generator to generate a sequence of m+s random bits, (b0, b1, 
…, bm+s-1). 

2. Let  mod rt. 

3. Let (a0, a1, …, at-1) be the unique sequence of values satisfying 0 ≤ ai ≤ r-1 such 

that . 
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The complex modular method may have better overall performance than the simple 
modular method if many random numbers are needed.  This method produces a random 
value with a negligible skew; that is, the probability that ai=w for any particular value of w 
(0 ≤ w ≤ r-1) is not exactly 1/r. However, for a large enough value of s, the difference 
between the probability that ai=w for any particular value of w and 1/r is negligible.  The 
value of s shall be greater than or equal to 64.  The complex modular method coincides 
with the simple modular method when t=1. 
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Appendix B: (Informative) Example Pseudocode for Each DRBG 
Mechanism 

The internal states in these examples are considered to be an array of states, identified by 
state_handle. A particular state is addressed as internal_state (state_handle), where the 
value of  state_handle begins at 0 and ends at n-1, and n is the number of internal states 
provided by an implementation. A particular element in the internal state is addressed by 
internal_state (state_handle).element. In an empty internal state, all bitstrings are set to 
Null, and all integers are set to 0.  

For each example in this appendix, arbitary values have been selected that are consistent 
with the allowed values for each DRBG mechanism, as specified in the appropriate table in 
Section 10. 

The pseudocode in this appendix does not include the necessary conversions (e.g., integer 
to bitstring) for an implementation. When conversions are required, they shall be 
accomplished as specified in Appendix A. 

The following routine is defined for these pseudocode examples: 

Find_state_space (): A function that finds an unused internal state. The function 
returns a status (either “Success” or a message indicating that an unused internal state 
is not available) and, if status = “Success”, a state_handle that points to an available 
internal_state in the array of internal states. If status ≠ “Success”, an invalid 
state_handle is returned. 

When the uninstantantiate function is invoked in the following examples, the function 
specified in Section 9.4 is called. 

B.1 Hash_DRBG Example 

This example of Hash_DRBG uses the SHA-1 hash function, and prediction resistance is 
supported. Both a personalization string and additional input are supported. A 32-bit 
incrementing counter is used as the nonce for instantiation (instantiation_nonce); the nonce 
is initialized when the DRBG is instantiated (e.g., by a call to the clock or by setting it to a 
fixed value) and is incremented for each instantiation. 

A total of ten internal states are provided (i.e., ten instantiations may be handled 
simultaneously).  

For this implementation, the functions and algorithms are “inline”, i.e., the algorithms are 
not called as separate routines from the function envelopes. Also, the Get_entropy_input 
function uses only three input parameters, since the first two parameters (as specified in 
Section 9) have the same value. 

The internal state contains values for V, C, reseed_counter, security_strength and 
prediction_resistance_flag, where V and C are bitstrings, and reseed_counter, 
security_strength and the prediction_resistance_flag are integers. A requested prediction 
resistance capability is indicated when prediction_resistance_flag = 1.  
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In accordance with Table 2 in Section 10.1, the 112- and 128-bit security strengths may be 
instantiated. Using SHA-1, the following definitions are applicable for the instantiate, 
generate and reseed functions and algorithms: 

1. highest_supported_security_strength = 128. 

2. Output block length (outlen) = 160 bits. 

3. Required minimum entropy for instantiation and reseed = security_strength. 

4. Seed length (seedlen) = 440 bits. 

5. Maximum number of bits per request (max_number_of_bits_per_request) = 5000 
bits. 

6. Reseed interval (reseed_interval) = 100,000 requests. 

7. Maximum length of the personalization string (max_personalization_string_length) 
= 512 bits. 

8. Maximum length of additional_input (max_additional_input_string_length) = 512 
bits. 

9. Maximum length of entropy input (max _length) = 1000 bits. 

B.1.1 Instantiation of Hash_DRBG 

This implementation will return a text message and an invalid state handle (-1) when an 
error is encountered. Note that the value of instantiation_nonce is an internal value that is 
always available to the instantiate function. 
Note that this implementation does not check the prediction_resistance_flag, since the 
implementation has been designed to support prediction resistance. However, if a 
consuming application actually wants prediction resistance, the implementation expects 
that prediction_resistance_flag = 1 during instantiation; this will be used in the generate 
function in Appendix B.1.3. 

Hash_DRBG_Instantiate_function:  
Input: integer (requested_instantiation_security_strength, prediction_resistance_flag), 

bitstring personalization_string. 

Output: string status, integer state_handle. 

Process: 
Comment: Check the input parameters. 

1. If (requested_instantiation_security_strength > 128), then Return (“Invalid 
requested_instantiation_security_strength”, -1). 

2. If (len (personalization_string) > 512), then Return (“Personalization_string 
too long”, -1). 

Comment: Set the security_strength to one of 
the valid security strengths. 
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3. If (requested_instantiation_security_strength ≤ 112), then security_strength = 
112 
Else security_strength = 128. 

Comment: Get the entropy_input. 
4. (status, entropy_input) = Get_entropy_input (security_strength, 1000, 

prediction_resistance_request). 

5. If (status ≠ “Success”), then Return (status, -1). 

Comment: Increment the nonce; actual coding 
must ensure that it wraps when the storage 
limit is reached. 

6. instantiation_nonce = instantiation_nonce + 1. 

Comment: The instantiate algorithm is 
provided in steps 7-11. 

7. seed_material = entropy_input || instantiation_nonce || personalization_string. 

8. seed = Hash_df (seed_material, 440). 

9. V = seed.  

10. C = Hash_df ((0x00 || V), 440). 

11. reseed_counter = 1. 

Comment: Find an unused internal 
state. 

12. (status, state_handle) = Find_state_space ( ).  

13. If (status ≠ “Success”), then Return (status, -1). 
14. Save the internal state. 

14.1 internal_state (state_handle).V = V. 
14.2 internal_state (state_handle).C = C. 

14.3 internal_state (state_handle).reseed_counter = reseed_counter. 

14.4 internal_state (state_handle). security_strength = security_strength. 
14.5 internal_state (state_handle).prediction_resistance_flag = 

prediction_resistance_flag. 
15. Return (“Success”, state_handle). 
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B.1.2 Reseeding a Hash_DRBG Instantiation 

The implementation is designed to return a text message as the status when an error is 
encountered.  

Hash_DRBG_Reseed_function:  
Input: integer state_handle, integer prediction_resistance_request, bitstring 
additional_input. 
Output: string status. 

Process: 
Comment: Check the validity of the 
state_handle. 

1. If ((state_handle < 0) or (state_handle > 9) or (internal_state (state_handle) = 
{Null, Null, 0, 0, 0})), then Return (“State not available for the state_handle”). 

Comment: Get the internal state values 
needed to determine the new internal state.  

2. Get the appropriate internal_state values. 

 V = internal_state(state_handle).V.  

 security_strength = internal_state(state_handle).security_strength. 

Check the length of the additional_input. 
3. If (len (additional_input) > 512), then Return (“additional_input too long”). 

Comment: Get the entropy_input. 
4. (status, entropy_input) = Get_entropy_input (security_strength, 1000, 

prediction_resistance_request). 

5. If (status ≠ “Success”), then Return (status). 
Comment: The reseed algorithm is provided 
in steps 6-10. 

6. seed_material = 0x01 || V || entropy_input || additional_input. 
7. seed = Hash_df (seed_material, 440). 

8. V = seed. 

9. C = Hash_df ((0x00 || V), 440). 
10. reseed_counter = 1. 

Comment: Update the working_state portion 
of the internal state. 

11. Update the appropriate state values. 

11.1 internal_state (state_handle).V = V. 
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11.2 internal_ state (state_handle).C = C. 

11.3 internal_ state (state_handle).reseed_counter = reseed_counter. 

12. Return (“Success”). 

B.1.3 Generating Pseudorandom Bits Using Hash_DRBG 

The implementation returns a Null string as the pseudorandom bits if an error has been 
detected. Prediction resistance is requested when prediction_resistance_request = 1. 

In this implementation, prediction resistance is requested by supplying 
prediction_resistance_request = 1 when the Hash_DRBG function is invoked. 

Hash_DRBG_Generate_function: 
Input: integer (state_handle, requested_no_of bits, requested_security_strength, 

prediction_resistance_request), bitstring additional_input. 
Output: string status, bitstring pseudorandom_bits. 

Process: 
Comment: Check the validity of the 
state_handle. 

1. If ((state_handle < 0) or (state_handle > 9) or (state (state_handle) = {Null, 
Null, 0, 0, 0})), then Return (“State not available for the state_handle”, Null). 

2. Get the internal state values. 

2.1 V = internal_state (state_handle).V. 

2.2 C = internal_state (state_handle).C. 

2.3 reseed_counter = internal_state (state_handle).reseed_counter. 

2.4 security_strength = internal_state (state_handle).security_strength. 

2.5 prediction_resistance_flag = internal_state 
(state_handle).prediction_resistance_flag. 

Comment: Check the validity of the other 
input parameters. 

3. If (requested_no_of_bits > 5000) then Return (“Too many bits requested”, 
Null). 

4. If (requested_security_strength > security_strength), then Return (“Invalid 
requested_security_strength”, Null). 

5. If (len (additional_input) > 512), then Return (“additional_input too long”, 
Null). 

6. If ((reseed_counter > 100,000) OR (prediction_resistance_request = 1)), then  
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6.1  status = Hash_DRBG_Reseed_ function (state_handle, 
prediction_resistance_request, additional_input). 

6.2 If (status ≠ “Success”), then Return (status, Null). 
6.3 Get the new internal state values that have changed. 

7.3.1 V = internal_state (state_handle).V. 

7.3.2 C = internal_state (state_handle).C. 

7.3.3 reseed_counter = internal_state (state_handle).reseed_counter. 

6.4 additional_input = Null. 
Comment: Steps 7-15 provide the rest of the 
generate algorithm. Note that in this 
implementation, the Hashgen routine is also 
inline as steps 8-12.  

7. If (additional_input ≠ Null), then do 

7.1 w = Hash (0x02 || V || additional_input). 
7.2 V = (V + w) mod 2440. 

8. .  

9. data = V. 
10. W = the Null string. 

11. For i = 1 to m 

11.1 wi = Hash (data). 

11.2 W = W || wi. 
11.3 data = (data + 1) mod 2440.  

12. pseudorandom_bits = leftmost (W, requested_no_of_bits). 
13. H = Hash (0x03 || V). 

14. V = (V + H + C + reseed_counter) mod 2440. 
15. reseed_counter = reseed_counter + 1. 

Comments: Update the working_state. 

16. Update the changed values in the state. 
16.1  internal_state (state_handle).V = V. 
16.2 internal_state (state_handle).reseed_counter = reseed_counter. 

 17. Return (“Success”, pseudorandom_bits).  
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B.2 HMAC_DRBG Example 

This example of HMAC_DRBG uses the SHA-256 hash function. Reseeding and 
prediction resistance are not supported. The nonce for instantiation consists of a random 
value with security_strength/2 bits of entropy; the nonce is obtained by increasing the call 
for entropy bits via the Get_entropy_input call by security_strength/2 bits (i.e., by adding 
security_strength/2 bits to the security_strength value). The HMAC_DRBG_Update 
function is specified in Section 10.1.2.2. 

A personalization string is supported, but additional input is not. A total of three internal 
states are provided. For this implementation, the functions and algorithms are written as 
separate routines. Also, the Get_entropy_input function uses only two input parameters, 
since the first two parameters (as specified in Section 9) have the same value, and 
prediction resistance is not available. 

The internal state contains the values for V, Key, reseed_counter, and security_strength, 
where V and C are bitstrings, and reseed_counter and security_strength are integers.  

In accordance with Table 2 in Section 10.1, security strengths of 112, 128, 192 and 256 
bits may be instantiated. Using SHA-256, the following definitions are applicable for the 
instantiate and generate functions and algorithms: 

1. highest_supported_security_strength = 256. 

2. Output block (outlen) = 256 bits. 

3. Required minimum entropy for the entropy input at instantiation = 3/2 
security_strength (this includes the entropy required for the nonce). 

4. Seed length (seedlen) = 440 bits. 

5. Maximum number of bits per request (max_number_of_bits_per_request) = 7500 
bits. 

6. Reseed_interval (reseed_ interval) = 10,000 requests. 

7. Maximum length of the personalization string (max_personalization_string_length) 
= 160 bits. 

8. Maximum length of the entropy input (max _length) = 1000 bits. 

B.2.1 Instantiation of HMAC_DRBG 

This implementation will return a text message and an invalid state handle (−1) when an error 
is encountered. 

HMAC_DRBG_Instantiate_function: 
Input: integer (requested_instantiation_security_strength), bitstring 

personalization_string. 

Output: string status, integer state_handle. 

Process: 
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Check the validity of the input parameters. 

1.   If (requested_instantiation_security_strength > 256), then Return (“Invalid 
requested_instantiation_security_strength”, −1). 

2. If (len (personalization_string) > 160), then Return (“Personalization_string 
too long”, −1) 

Comment: Set the security_strength to 
one of the valid security strengths. 

3. If (requested_security_strength ≤ 112), then security_strength = 112 

Else (requested_ security_strength ≤ 128), then security_strength = 128 

Else (requested_ security_strength ≤ 192), then security_strength = 192 

Else security_strength = 256. 
Comment: Get the entropy_input and 
the nonce. 

4. min_entropy = 1.5 × security_strength. 

5. (status, entropy_input) = Get_entropy_input (min_entropy, 1000). 

6. If (status ≠ “Success”), then Return (status, −1). 
Comment: Invoke the instantiate algorithm. 
Note that the entropy_input contains the 
nonce. 

7. (V, Key, reseed_counter) = HMAC_DRBG_Instantiate_algorithm 
(entropy_input, personalization_string). 

Comment: Find an unused internal state. 

8. (status, state_handle) = Find_state_space ( ). 

9. If (status ≠ “Success”), then Return (status, −1). 

10. Save the initial state. 

10.1 internal_state (state_handle).V = V. 
10.2 internal_state (state_handle). Key = Key. 
10.3 internal_state (state_handle). reseed_counter = reseed_counter. 

 10.4 internal_state (state_handle).security_strength = security_strength. 

11. Return (“Success” and state_handle). 

HMAC_DRBG_Instantiate_algorithm (...): 
Input: bitstring (entropy_input, personalization_string). 

Output: bitstring (V, Key), integer reseed_counter. 
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Process: 
1. seed_material = entropy_input || personalization_string. 

2. Set Key to outlen bits of zeros.  

3. Set V to outlen/8 bytes of 0x01. 

4. (Key, V) = HMAC_DRBG_Update (seed_material, Key, V). 

5.  reseed_counter = 1. 

6. Return (V, Key, reseed_counter). 

B.2.2 Generating Pseudorandom Bits Using HMAC_DRBG 

The implementation returns a Null string as the pseudorandom bits if an error has been 
detected.  

HMAC_DRBG_Generate_function: 
Input: integer (state_handle, requested_no_of_bits, requested_security_strength). 

Output: string (status), bitstring pseudorandom_bits. 

Process: 
Comment: Check for a valid state handle. 

1. If ((state_handle < 0) or (state_handle > 2) or (internal_state (state_handle) = 
{Null, Null, 0, 0}), then Return (“State not available for the indicated 
state_handle”, Null).   

2. Get the internal state. 

2.1 V = internal_state (state_handle).V. 

2.2 Key = internal_state (state_handle).Key. 

2.3 security_strength = internal_state (state_handle).security_strength. 
2.4 reseed_counter = internal_state (state_handle).reseed_counter. 

Comment: Check the validity of the rest of 
the input parameters. 

3. If (requested_no_of_bits  > 7500), then Return (“Too many bits requested”, 
Null). 

4. If (requested_security_strength > security_strength), then Return (“Invalid 
requested_security_strength”, Null). 

Comment: Invoke the generate algorithm. 

5. (status, pseudorandom_bits, V, Key, reseed_counter) = 
HMAC_DRBG_Generate_algorithm (V, Key, reseed_counter, 
requested_number_of_bits). 
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6. If (status = “Reseed required”), then Return (“DRBG can no longer be used. A 
new instantiation is required”, Null). 

7. Update the changed state values. 

7.1 internal_state (state_handle).V = V. 

7.2 internal_state (state_handle).Key = Key. 
7.3 internal_state (state_handle).reseed_counter = reseed_counter. 

8. Return (“Success”, pseudorandom_bits). 

HMAC_DRBG_Generate_algorithm: 

Input: bitstring (V, Key), integer (reseed_counter, requested_number_of_bits). 

Output: string status, bitstring (pseudorandom_bits, V, Key), integer reseed_counter. 

Process: 

1 If (reseed_counter ≥ 10,000), then Return (“Reseed required”, Null, V, Key, 
reseed_counter). 

2. temp = Null. 
3 While (len (temp) < requested_no_of_bits) do: 

3.1 V = HMAC (Key, V). 

3.2 temp = temp || V. 

4. pseudorandom_bits = leftmost (temp, requested_no_of_bits). 

5. (Key, V) = HMAC_DRBG_Update (Null, Key, V). 

6. reseed_counter = reseed_counter + 1. 

7. Return (“Success”, pseudorandom_bits, V, Key, reseed_counter). 

B.3 CTR_DRBG Example Using a Derivation Function 

This example of CTR_DRBG uses AES-128 and uses the entire input block as the counter 
field. The reseed and prediction resistance capabilities are supported, and prediction 
resistance is obtained during every Get_entropy_input call and reseed request. Although 
the prediction_resistance_request parameter in the Get_entropy_input and reseed request 
could be omitted, in this case, they are shown in the pseudocode as a reminder that 
prediction_resistance will be performed. A block cipher derivation function using AES-
128 is used, and a personalization string and additional input are supported. A total of five 
internal states are available. For this implementation, the functions and algorithms are 
written as separate routines. AES_ECB_Encrypt is the Block_Encrypt function 
(specified in Section 10.3.3) that uses AES-128 in the ECB mode. 

The nonce for instantiation (instantiation_nonce) consists of a 32-bit incrementing counter. 
The nonce is initialized when the DRBG is instantiated (e.g., by a call to the clock or by 
setting it to a fixed value) and is incremented for each instantiation. 
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The internal state contains the values for V, Key, reseed_counter, and security_strength, 
where V and Key are bitstrings, and all other values are integers. Since prediction 
resistance is known to be supported, there is no need for prediction_resistance_flag in the 
internal state.  

In accordance with Table 3 in Section 10.2.1, security strengths of 112 and 128 bits may be 
supported. Using AES-128, the following definitions are applicable for the instantiate, 
reseed and generate functions: 

1. highest_supported_security_strength = 128. 

2. Input/output block length (blocklen) = 128 bits. 

3. Key length (keylen) = 128 bits. 

4. Required minimum entropy for the entropy input during instantiation and reseeding 
= security_strength. 

5. Minimum entropy input length (min _length) = security_strength bits. 

6. Maximum entropy input length (max _length) = 1000 bits. 

7. Maximum personalization string input length 
(max_personalization_string_input_length) = 800 bits. 

8. Maximum additional input length (max_additional_input_length) = 800 bits. 

9. Seed length (seedlen) = 256 bits. 

10. Maximum number of bits per request (max_number_of_bits_per_request) = 4000 
bits. 

11. Reseed interval (reseed_interval) = 100,000 requests.  

B.3.1 The CTR_DRBG_Update Function 

CTR_DRBG_Update: 
Input: bitstring (provided_data, Key, V). 

Output: bitstring (Key, V). 

Process: 
1. temp = Null. 
2. While (len (temp) < 256) do 

2.1 V = (V + 1) mod 2128. 

2.2 output_block = AES_ECB_Encrypt (Key, V). 

2.3 temp = temp || ouput_block. 

3. temp = leftmost (temp, 256). 

4 temp = temp ⊕ provided_data. 
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5. Key = leftmost (temp, 128). 
6. V = rightmost (temp, 128). 
7. Return (Key, V). 

B.3.2 Instantiation of CTR_DRBG Using a Derivation Function 

This implementation will return a text message and an invalid state handle (−1) when an error 
is encountered. Block_Cipher_df is the derivation function in Section 10.3.2, and uses AES-
128 in the ECB mode as the Block_Encrypt function. 

Note that this implementation does not include the prediction_resistance_flag in the input 
parameters, nor save it in the internal state, since prediction resistance is known to be 
supported.  

CTR_DRBG_Instantiate_function:  

Input: integer (requested_instantiation_security_strength), bitstring 
personalization_string. 

Output: string status, integer state_handle. 

Process: 
Comment: Check the validity of the input 
parameters. 

1.  If (requested_instantiation_security_strength > 128) then Return (“Invalid 
requested_instantiation_security_strength”, −1). 

2. If (len (personalization_string) > 800), then Return (“Personalization_string 
too long”, −1). 

3. If (requested_instantiation_security_strength ≤ 112), then security_strength = 
112 

Else security_strength = 128. 

Comment: Get the entropy input. 

4. (status, entropy_input) = Get_entropy_input (security_strength, 
security_strength, 1000, prediction_resistance_request). 

5. If (status ≠ “Success”), then Return (status, −1). 
Comment: Increment the nonce; actual coding 
must ensure that the nonce wraps when its 
storage limit is reached, and that the counter 
pertains to all instantiations, not just this one. 

6. instantiation_nonce = instantiation_nonce + 1. 

Comment: Invoke the instantiate algorithm. 
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7. (V, Key, reseed_counter) = CTR_DRBG_Instantiate_algorithm 
(entropy_input, instantiation_nonce, personalization_string). 

Comment: Find an available internal state and 
save the initial values. 

8. (status, state_handle) = Find_state_space ( ). 

9. If (status ≠ “Success”), then Return (status, −1). 
10. Save the internal state. 

10.1 internal_state_ (state_handle).V = V. 

10.2 internal_state_ (state_handle).Key = Key. 
10.3 internal_state_ (state_handle).reseed_counter = reseed_counter. 

10.4 internal_state_ (state_handle).security_strength = security_strength. 

11. Return (“Success”, state_handle). 

CTR_DRBG_Instantiate_algorithm: 
Input: bitstring (entropy_input, nonce, personalization_string). 

Output: bitstring (V, Key), integer (reseed_counter). 

Process: 

1. seed_material = entropy_input || nonce || personalization_string. 

2. seed_material = Block_Cipher_df (seed_material, 256).  
3. Key = 0128. Comment: 128 bits. 

4. V = 0128. Comment: 128 bits. 

5. (Key, V) = CTR_DRBG_Update (seed_material, Key, V). 

6. reseed_counter = 1. 

7. Return (V, Key, reseed_counter). 

B.3.3 Reseeding a CTR_DRBG Instantiation Using a Derivation Function 

The implementation is designed to return a text message as the status when an error is 
encountered. 

CTR_DRBG_Reseed_function:  
Input: integer (state_handle), integer prediction_resistance_request, bitstring 
additional_input. 
Output: string status. 

Process: 
Comment: Check for the validity of 
state_handle. 
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1. If ((state_handle < 0) or (state_handle > 4) or (internal_state (state_handle) = 
{Null, Null, 0, 0}), then Return (“State not available for the indicated 
state_handle”).  

2.  Get the internal state values.  

2.1 V = internal_state (state_handle).V. 

2.2 Key = internal_state (state_handle).Key. 
2.3 security_strength = internal_state (state_handle).security_strength. 

3. If (len (additional_input) > 800), then Return (“additional_input too long”). 

4. (status, entropy_input) = Get_entropy_input (security_strength, 
security_strength, 1000, prediction_resistance_request). 

6. If (status ≠ “Success”), then Return (status). 
Comment: Invoke the reseed algorithm. 

7. (V, Key, reseed_counter) = CTR_DRBG_Reseed_algorithm (V, Key, 
reseed_counter, entropy_input, additional_input). 

8. Save the internal state. 

8.1 internal_state (state_handle). V = V. 

8.2 internal_state (state_handle). Key = Key. 
8.3 internal_state (state_handle). reseed_counter = reseed_counter. 
8.4 internal_state (state_handle). security_strength  = security_strength. 

9. Return (“Success”). 

CTR_DRBG_Reseed_algorithm: 
Input: bitstring (V, Key), integer (reseed_counter), bitstring (entropy_input, 

additional_input). 
Output: bitstring (V, Key), integer (reseed_counter). 

Process: 
1. seed_material = entropy_input || additional_input. 
2. seed_material = Block_Cipher_df (seed_material, 256). 

3. (Key, V) = CTR_DRBG_Update (seed_material, Key, V). 

4. reseed_counter = 1. 

5. Return V, Key, reseed_counter). 

B.3.4 Generating Pseudorandom Bits Using CTR_DRBG 

The implementation returns a Null string as the pseudorandom bits if an error has been 
detected.  
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CTR_DRBG_Generate_function: 
Input: integer (state_handle, requested_no_of_bits, requested_security_strength, 

prediction_resistance_request), bitstring additional_input. 
Output: string status, bitstring pseudorandom_bits. 

Process: 
Comment: Check the validity of state_handle. 

1. If ((state_handle < 0) or (state_handle > 4) or (internal_state (state_handle) = 
{Null, Null, 0, 0}), then Return (“State not available for the indicated 
state_handle”, Null).   

2. Get the internal state. 

2.1 V = internal_state (state_handle).V. 

2.2 Key = internal_state (state_handle).Key. 
2.3 security_strength = internal_state (state_handle).security_strength. 
2.4 reseed_counter = internal_state (state_handle).reseed_counter. 

Comment: Check the rest of the input 
parameters. 

3. If (requested_no_of_bits  > 4000), then Return (“Too many bits requested”, 
Null). 

4. If (requested_security_strength > security_strength), then Return (“Invalid 
requested_security_strength”, Null). 

5. If (len (additional_input) > 800), then Return (“additional_input too long”, 
Null). 

6. reseed_required_flag = 0. 

7. If ((reseed_required_flag = 1) OR (prediction_resistance_flag = 1)), then 

7.1 status = CTR_DRBG_Reseed_function (state_handle, 
prediction_resistance_request, additional_input). 

7.2 If (status ≠ “Success”), then Return (status, Null). 
7.3 Get the new working state values; the administrative information was not 

affected. 

7.3.1 V = internal_state (state_handle).V. 

7.3.2 Key = internal_state (state_handle).Key. 
7.3.3 reseed_counter = internal_state (state_handle).reseed_counter. 

7.4 additional_input = Null. 
7.5 reseed_required_flag = 0. 
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Comment: Generate bits using the generate 
algorithm. 

8. (status, pseudorandom_bits, V, Key, reseed_counter) = 
CTR_DRBG_Generate_algorithm (V, Key, reseed_counter, 
requested_number_of_bits, additional_input). 

9. If (status = “Reseed required”), then 

9.1 reseed_required_flag = 1. 

9.2 Go to step 7. 

10. Update the internal state. 

10.1 internal_state (state_handle).V = V. 

10.2 internal_state (state_handle).Key = Key. 
10.3 internal_state (state_handle).reseed_counter = reseed_counter. 
10.4 internal_state (state_handle).security_strength = security_strength. 

11. Return (“Success”, pseudorandom_bits). 

CTR_DRBG_Generate_algorithm: 
Input: bitstring (V, Key), integer (reseed_counter, requested_number_of_bits) 

bitstring additional_input. 
Output: string status, bitstring (returned_bits, V, Key), integer reseed_counter. 

Process: 
1. If (reseed_counter > 100,000), then Return (“Reseed required”, Null, V, 

Key, reseed_counter). 

2. If (additional_input ≠ Null), then 
2.1 additional_input = Block_Cipher_df (additional_input, 256). 

2.2  (Key, V) = CTR_DRBG_Update (additional_input, Key, V). 

Else additional_input = 0256. 

3. temp = Null. 
4. While (len (temp) < requested_number_of_bits) do: 

4.1 V = (V + 1) mod 2128. 

4.2 output_block = AES_ECB_Encrypt (Key, V). 

4.3 temp = temp || ouput_block. 

5. returned_bits = leftmost (temp, requested_number_of_bits) 

6.  (Key, V) = CTR_DRBG_Update (additional_input, Key, V) 

7. reseed_counter = reseed_counter + 1. 
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8. Return (“Success”, returned_bits, V, Key, reseed_counter). 

B.4 CTR_DRBG Example Without a Derivation Function 

This example of CTR_DRBG is the same as the previous example except that a derivation 
function is not used (i.e., full entropy is always available). As in Appendix B.3, the 
CTR_DRBG uses AES-128. The reseed and prediction resistance capabilities are 
available. Both a personalization string and additional input are supported. A total of five 
internal states are available. For this implementation, the functions and algorithms are 
written as separate routines. AES_ECB_Encrypt is the Block_Encrypt function 
(specified in Section 10.3.3) that uses AES-128 in the ECB mode. 

The internal state contains the values for V, Key, reseed_counter, and security_strength, 
where V and Key are strings, and all other values are integers.Since prediction resistance is 
known to be supported, there is no need for prediction_resistance_flag in the internal state. 

In accordance with Table 3 in Section 10.2.1, security strengths of 112 and 128 bits may be 
supported. The definitions are the same as those provided in Appendix B.3, except that to 
be compliant with Table 3, the maximum size of the personalization_string is 256 bits. In 
addition, the maximum size of any additional_input is 256 bits (i.e., len (additional_input 
≤ seedlen)). 

B.4.1 The CTR_DRBG_Update Function 

The update function is the same as that provided in Appendix B.3.1. 

B.4.2 Instantiation of CTR_DRBG Without a Derivation Function 

The instantiate function (CTR_DRBG_Instantiate_function) is the same as that provided 
in Appendix B.3.2, except for the following: 

• Step 2 is replaced by: 
If (len (personalization_string) > 256), then Return (“Personalization_string too 
long”, −1). 

• Step 6 is replaced by : 
instantiation_nonce = Null. 

The instantiate algorithm (CTR_DRBG_Instantiate_algorithm) is the same as that 
provided in Appendix B.3.2, except that steps 1 and 2 are replaced by: 

temp = len (personalization_string). 

If (temp < 256), then personalization_string = personalization_string || 0256-temp.  

seed_material = entropy_input ⊕ personalization_string. 
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B.4.3 Reseeding a CTR_DRBG Instantiation Without a Derivation 
Function 

The reseed function (CTR_DRBG_Reseed_function) is the same as that provided in 
Appendix B.3.3, except that step 3 is replaced by: 

If (len (additional_input) > 256), then Return (“additional_input too long”). 

The reseed algorithm (CTR_DRBG_Reseed_algorithm) is the same as that provided in 
Appendix B.3.3, except that steps 1 and 2 are replaced by: 

temp = len (additional_input). 
If (temp < 256), then additional_input = additional_input || 0256-temp.  

seed_material = entropy_input ⊕ additional_input. 

B.4.4 Generating Pseudorandom Bits Using CTR_DRBG 

The generate function (CTR_DRBG_Generate_function) is the same as that provided in 
Appendix B.3.4, except that step 5 is replaced by : 

If (len (additional_input) > 256), then Return (“additional_input too long”, Null). 
The generate algorithm (CTR_DRBG_Generate_algorithm) is the same as that provided 
in Appendix B.3.4, except that step 2.1 is replaced by: 

temp = len (additional_input). 
If (temp < 256), then additional_input = additional_input || 0256-temp. 
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Appendix C: (Informative) DRBG Mechanism Selection 

Almost no application or system designer starts with the primary purpose of generating 
good random bits. Instead, the designer typically starts with a goal that he wishes to 
accomplish, then decides on cryptographic mechanisms, such as digital signatures or block 
ciphers that can help him achieve that goal.  Typically, as the requirements of those 
cryptographic mechanisms are better understood, he learns that random bits will need to be 
generated, and that this must be done with great care so that the cryptographic mechanisms 
will not be weakened.  At this point, there are three things that may guide the designer's 
choice of a DRBG mechanism: 

a. He may already have decided to include a set of cryptographic primitives as part of 
his implementation. By choosing a DRBG mechanism based on one of these 
primitives, he can minimize the cost of adding that DRBG mechanism.  In 
hardware, this translates to lower gate count, less power consumption, and less 
hardware that must be protected against probing and power analysis.  In software, 
this translates to fewer lines of code to write, test, and validate. 

For example, a module that generates RSA signatures has an available hash 
function, so a hash-based DRBG mechanism (e.g., Hash_DRBG or 
HMAC_DRBG) is a natural choice. 

b. He may already have decided to trust a block cipher, hash function, or keyed hash 
function to have certain properties.  By choosing a DRBG mechanism based on 
similar properties, he can minimize the number of algorithms he has to trust. 

For example, an AES-based DRBG mechanism (i.e., CTR_DRBG using AES) 
might be a good choice when a module provides encryption with AES.  Since the 
security of the module is dependent on the strength of AES, the module's security is 
not made dependent on any additional cryptographic primitives or assumptions. 

c. Multiple cryptographic primitives may be available within the system or 
consuming application, but there may be restrictions that need to be addressed (e.g., 
code size or performance requirements).  

For example, a module with support for both hash functions and block ciphers 
might use the CTR_DRBG if the ability to parallize the generation of random bits 
is needed.  

The DRBG mechanisms specified in this Recommendation have different performance 
characteristics, implementation issues, and security assumptions. 

C.1 Hash_DRBG 

Hash_DRBG is based on the use of an approved hash function in a counter mode similar 
to the counter mode specified in NIST SP 800-38A.  For each generate request, the current 
value of V (a secret value in the internal state) is used as the starting counter that is 
iteratively changed to generate each successive outlen-bit block of requested output, where 
outlen is the number of bits in the hash function output block. At the end of the generate 
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request, and before the pseudorandom output is returned to the consuming application, the 
secret value V is updated in order to prevent backtracking.   

Performance.   The Generate function is parallelizable, since it uses the counter mode. 
Within a generate request, each outlen-bit block of output requires one hash function 
computation and several addition operations; an additional hash function computation is 
required to provide the backtracking resistance.  Hash_DRBG produces pseudorandom 
output bits in about half the time required by HMAC_DRBG.   

Security.  Hash_DRBG’s security depends on the underlying hash function’s behavior 
when processing a series of sequential input blocks.  If the hash function is replaced by a 
random oracle, Hash_DRBG is secure.  It is difficult to relate the properties of the hash 
function required by Hash_DRBG with common properties, such as collision resistance, 
pre-image resistance, or pseudorandomness.  There are known problems with 
Hash_DRBG when the DRBG is instantiated with insufficient entropy for the requested 
security strength, and then later provided with enough entropy to attain the amount of 
entropy required for the security strength, via the inclusion of additional input during a 
generate request. However, these problems do not affect the DRBG’s security when 
Hash_DRBG is instantiated with the amount of entropy specified in this 
Recommendation.  

Constraints on Outputs.  As shown in Table 2 of Section 10.1, for each hash function, up 
to 248 generate requests may be made, each of up to 219 bits.   

Resources.  Hash_DRBG requires access to a hash function, and the ability to perform 
addition with seedlen-bit integers.  Hash_DRBG uses the hash-based derivation function 
Hash_df (specified in Section 10.3.1) during instantiation and reseeding. Any 
implementation requires the storage space required for the internal state (see Section 
10.1.1.1).  

Algorithm Choices.  The choice of hash functions that may be used by Hash_DRBG is 
discussed in Section 10.1. 

C.2 HMAC_DRBG 

HMAC_DRBG is built around the use of an approved hash function using the HMAC 
construction.  To generate pseudorandom bits from a secret key (Key) and a starting value 
V, the HMAC_DRBG computes  

 V = HMAC (Key, V). 

At the end of a generation request, the HMAC_DRBG generates a new Key and V, each 
requiring one HMAC computation.  

Performance.  HMAC_DRBG produces pseudorandom outputs considerably more 
slowly than the underlying hash function processes inputs; for SHA-256, a long generate 
request produces output bits at about 1/4 of the rate that the hash function can process 
input bits.  Each generate request also involves additional overhead equivalent to 
processing 2048 extra bits with SHA-256.  Note, however, that hash functions are typically 
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quite fast; few if any consuming applications are expected to need output bits faster than 
HMAC_DRBG can provide them. 

Security.  The security of HMAC_DRBG is based on the assumption that an approved 
hash function used in the HMAC construction is a pseudorandom function family.  
Informally, this means that when an attacker does not know the key used, HMAC outputs 
look random, even given knowledge and control over the inputs.  In general, even 
relatively weak hash functions seem to be quite strong when used in the HMAC 
construction.  On the other hand, there is not a reduction proof from the hash function’s 
collision resistance properties to the security of the DRBG; the security of HMAC_DRBG 
ultimately relies on the pseudorandomness properties of the underlying hash function. Note 
that the pseudorandomness of HMAC is a widely used assumption in designs, and the 
HMAC_DRBG requires far less demanding properties of the underlying hash function 
than Hash_DRBG. 

Constraints on Outputs.  As shown in Table 2 of Section 10.1, for each hash function, up 
to 248 generate requests may be made, each of up to 219 bits.   

Resources.  HMAC_DRBG requires access to a dedicated HMAC implementation for 
optimal performance. However, a general-purpose hash function implementation can 
always be used to implement HMAC. Any implementation requires the storage space 
required for the internal state (see Section 10.1.2.1). 

Algorithm Choices.  The choice of hash functions that may be used by HMAC_DRBG is 
discussed in Section 10.1. 

C.3 CTR_DRBG 

CTR_DRBG is based on using an approved block cipher algorithm in counter mode (see 
SP 800-38A).  At the present time, only three-key TDEA and AES are approved for use 
by the Federal government for use in this DRBG mechanism.  Pseudorandom outputs are 
generated by encrypting successive values of a counter; after a generate request, a new key 
and new starting counter value are generated.   

Performance.  For large generate requests, CTR_DRBG produces outputs at the same 
speed as the underlying block cipher algorithm encrypts data.  Furthermore, CTR_DRBG 
is parallelizeable.  At the end of each generate request, work equivalent to two, three or 
four encryptions is performed, depending on the choice of underlying block cipher 
algorithm, to generate new keys and counters for the next generate request. 

Security.  The security of CTR_DRBG is directly based on the security of the underlying 
block cipher algorithm, in the sense that, as long as some limits on the total number of 
outputs are observed, any attack on CTR_DRBG represents an attack on the underlying 
block cipher algorithm.   

Constraints on Outputs.  As shown in Table 3 of Section 10.2.1, for each of the three 
AES key sizes, up to 248 generate requests may be made, each of up to 219 bits, with a 
negligible chance of any weakness that does not represent a weakness in AES.  However, 
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the smaller block size of TDEA imposes more constraints: each generate request is limited 
to 213 bits, and at most, 232 such requests may be made. 

Resources.  CTR_DRBG may be implemented with or without a derivation function. 

When a derivation function is used, CTR_DRBG can process the personalization string 
and any additional input in the same way as any other DRBG mechanism, but at a cost in 
performance because of the use of the derivation function (as opposed to not using the 
derivation function; see below). Such an implementation may be seeded by any approved 
randomness source that may or may not provide full entropy. 

When a derivation function is not used, CTR_DRBG is more efficient when the 
personalization string and any additional input are provided, but is less flexible because the 
lengths of the personalization string and additional input cannot exceed seedlen bits. Such 
implementations must be seeded by a randomness source that provides full entropy (e.g., 
an approved entropy source that has full entropy output or an approved NRBG). 

CTR_DRBG requires access to a block cipher algorithm, including the ability to change 
keys, and the storage space required for the internal state (see Section 10.2.1.1). 

Algorithm Choices.  The choice of block cipher algorithms and key sizes that may be 
used by CTR_DRBG is discussed in Section 10.2.1. 

C.4 Summary for DRBG Selection 

Table C-1 provides a summary of the costs and constraints of the DRBG mechanisms in 
this Recommendation. 
Table C-1: DRBG Mechanism Summary 

 Dominating Cost/Block Constraints (max.) 
Hash_DRBG 2 hash function calls 248 calls of 219 bits 

HMAC_DRBG 4 hash function calls 248 calls of 219 bits 
CTR_DRBG (TDEA) 1 TDEA encrypt 232 calls of 213 bits 
CTR_DRBG (AES) 1 AES encrypt 248 calls of 219 bits 
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Appendix F : (Informative) Revisions 

This original version of this Recommendation was completed in June, 2006. In March 2007, 
the following changes were made (note that the changes are indicated in italics): 

1. Section 8.3, item 1.a originally stated the following: 

“One or more values that are derived from the seed and become part of the 
internal state; these values must usually remain secret” 

The item now reads: 

“One or more values that are derived from the seed and become part of the 
internal state; these values should remain secret”. 

2. In Section 8.4, the third sentence originally stated: 

“Any security strength may be requested, but the DRBG will only be 
instantiated to one of the four security strengths above, depending on the 
DRBG implementation.” 

The sentence now reads: 

“Any security strength may be requested (up to a maximum of 256 bits), but the 
DRBG will only be instantiated to one of the four security strengths above, 
depending on the DRBG implementation.” 

3. In Section 8.7.1, the list of examples of information that could appear in a 
personalization string included privater keys, PINs and passwords. These items 
were removed from the list, and seedfiles were added. 

4. In Section 10.3.1.4, a step was inserted that will provide backtracking resistance 
(step 14 of the pseudocode). The same change was made to the example in 
Appendix B.5.3 (step 19.1). In addition, the two occurrences of block_counter (in 
input 1 and processing step 1) were corrected to be reseed_counter. 

This Recommendation was developed in concert with American National Standard (ANS) 
X9.82, a multi-part standard on random number generation. Many of the DRBGs in this 
Recommendation and the requirements for using and validating them are also provided in 
ANS X9.82, Part 3. Other parts of that Standard discuss entropy sources and RBG 
construction. During the development of the latter two documents, the need for additional 
requirements and capabilities for DRBGs were identified. As a result, the following changes 
were made to this Recommendation in August 2008 : 

1. Definitions have been added in Section 4 for the following: approved entropy 
source, DRBG mechanism, fresh entropy, ideal random bitstring, ideal random 
sequence and secure channel. The following definitions have been modified: 
backtracking resistance, deterministic random bit generator (DRBG), entropy, 
entropy input, entropy source, full entropy, min-entropy, prediction resistance, 
reseed, security strength, seed period and source of entropy input. 

2. In Section 6, a link was provided to examples for the DRBGs specified in this 
Recommendation. 
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3. In Section 7.2, paragraph 3. 2nd sentence: The “should” has been changed to 
“shall”, so that the sentence now reads: 

The personalization string shall be unique for all instantiations of the same 
DRBG mechanism type (e.g., HMAC_DRBG).   

4. In Section 8.2, paragraph 2, additional text was added to the the first sentence, 
which now reads: 

A DRBG is instantiated using a seed and may be reseeded; when reseeded, the 
seed shall be different than the seed used for instantiation.  

5. In Section 8.5, Figure 4 has been updated, and the last paragraph has been revised 
to discuss the use of a secure channel. 

6. In Sections 8.6.5 and 8.6.9, statements were inserted that prohibit a DRBG 
instantiation from reeeding itself. 

7. References to “entropy input” have been removed from Section 8.6.9. 

8. Section 8.8: An example was added to further clarify the meaning of prediction 
resistance. 

9. In Section 9, a prediction_resistance_request parameter has been added to the 
Get_entropy_input call, along with a description of its purpose to the text 
underneath the call. 

10. In Section 9, a footnote was inserted to explain why a 
prediction_resistance_requst parameter may be useful in the Get_entropy_input 
call. 

11. In Section 9.1, the following changes were made: 

• The following sentence has been added to the description of the 
prediction_resistance_flag: 

In addition, step 6 can be modified to not perform a check for the 
prediction_resistance_flag when the flag is not used in an implementation ; in 
this case, the Get_entropy_input call need not include the 
prediction_resistance_request parameter.  

• The following requirement has been added to the Required information not 
provided by the consuming application during instantiation. 
This input shall not be provided by the consuming application as an input 
parameter during the instantiate request. 

• A prediction_resistance_request parameter has been added to the 
Get_entropy_input call of step 6 of the Instantiate Process. 

• Step 5 was originally intended for implementations of the Dual_EC_DRBG 
to select an appropriate curve. This function is now performed by the 
Dual_EC_DRBG’s Instantiate_algorithm. Changes were made to provide the 



NIST SP 800-90A, Rev. 1  November 2014 

100  

 

security strength to the Instantiate_algorithm. The Instantiate_algortihm for 
each DRBG was changed to allow the input of the security strength. 

12. In Section 9.2, the following changes have been made: 

• A prediction_resistance_request parameter has been added to the 
Reseed_function call. 

• A description of the parameter has been added below the function call. 

• A step was inserted that checked a request for prediction resistance (via the 
prediction_resistance_request parameter) against the state of the 
prediction_resistance_flag that may have been set during instantiation. 

• A prediction_resistance_request parameter has been added to the 
Get_entropy_input call of (newly numbered) step 4 of the Reseed Process. 

• In the description of the entropy_input parameter, a restriction was added that 
the entropy_input is not to be provided by the instantiation being reseeded. by 
the DRBG instantiation being reseeded.  

• A footnote was inserted to explain why the prediction_resistance_request 
parameter might be useful. 

13. In Section 9.3.1, the following changes were made: 

• Text has been added to item to refer to the Reseed_function. 

• A prediction_resistance_request parameter has been added to the 
Get_entropy_input call of step 7.1 of the Generate Process. 

• A substep was inserted in step 9 of the Generate Process to check the 
prediction_resistance request against the state of the 
prediction_resistance_flag. 

14. In Section 9.3.2, step e, a phrase addressing the presence of the 
prediction_resistance_request indicator was inserted. 

15. In Sections 10.1 and 10.3.1, the new hash functions approved in FIPS 180-4 have 
been added. 

16. In Sections 10.1.2 (HMAC_DRBG) and 10.2.1 (CTR_DRBG), the update 
functions have been renamed to reflect the DRBG with which they are associated 
(i.e., renamed ro HMAC_DRBG_Update and CTR_DRBG_Update). 

17. In Section 10.1.2.1, the last paragraph has been revised to indicate that only the 
Key is considered to be a critical value. 

18. In Sections 10.1.2.3, 10.2.1.3.1, 10.2.1.3.2 and 10.3.1.2, the description of the 
personalization_string has been revised to indicate that the length the 
personalization_string may be zero. 

19. In Section 10.2.1.5, the following statement has been added to the first paragraph: 
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 If the derivation function is not used, then the maximum allowed length of 
additional_input = seedlen. 

20. In Section 10.3.1.2, the specification was changed to select an elliptic curve and 
return the parameters of that curve to the Instantiate_function that called the 
routine. 

21. In the first paragraph of Appendix A.1, a statement has been added that if 
alternative points are desired, they shall be generated as specified in Appendix 
A.2. 

22. The original Appendices C and D on entropy sources and RBG constructions, 
respectively, have been removed and the topics will be discussed in SP 800-90B 
and C 

23. In Appendix C.2 (originally Appendix E.2), a paragraph has been inserted after 
the table of E values that discusses the analysis associated with the table values. 

24. The additional uses of the prediction_resistance_request parameter (as specified 
in Section 9) have been added to the following appendices: 

• D.1.1, step 4; 

• D.1.2, Input and step 4; 

• D.1.3, step 7.1; 

• D.3.2, step 4;  

• D.3.3, Input and step 4; and 

• D.3.4, step 7.1. 
25. The name of the update call has been changed in the following appendices: 

• D.2.1, step 4; 

• D.2.2, step 5; 

• D.3.1, title; and 

• D.4.1, title. 

26. In Appendix D.3 (originally Appendix F.3), the first paragraph, which  discusses 
the example, has been modified to discuss the prediction_resistance_request 
parameter in the Get_entropy_input call. 

27. In Appendix D.5 (originally Appendix F.5), the description of the example in 
paragraph 2 has been changed so that the example does not include prediction 
resistance, and the definition for the reseed_interval has been removed from the 
list. The Dual_EC_Instantiate_function has been modified to reflect the changes 
made to the Instantiate_function and Instantiate_algorithm (see the last bullet of 
modification 8 above). In addition, the pseudocode for the Reseed_function has 
been removed, and steps in F.5.1 and F.5.2 that dealt with reseeding have been 
removed.  
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In 2014, the following substantive changes were made to revision 2 of SP 800-90A: 

1. The following definitions were modified to be consistent with definitions in other 
parts of this Recommendation: backtracking resistence, entropy source, non-
deterministic random bit generator, prediction resistance, and source of entropy 
input. The following definitions have been removed: public key and public-key 
pair. A definition for "randomness source" has been added, and the definition of 
"source of entropy input" has been removed. 

2. The term "source of entropy input" has been replaced by "randomness source" to 
avoid confusion with between the terms "entropy source input," which is used in SP 
800-90C to mean input from an entropy source, whereas a "randomness source" 
(formerly "source of entropy input") could be an entropy source, an NRBG or a 
DRBG. 

3. Section 5: The ECDLP abbreviation and the floor, ceiling and gcd symbols were 
removed. Definitions of the leftmost, rightmost and min functions have been added, 
and have been used  throughout the document. 

4. Section 6: The reference to number-theoretic problems was removed, as well as the 
old Appendix A that provided security considerations for DRBGs based on elliptic 
curves, the old Appendix F that listed shall statements.  

5. Section 7: The first paragraph has been modified, and includes an additional shall 
statement. In Section 7.1, the first two sentences have been modified for clarity. In 
Section 7.2, the second paragraph and the first sentence of the third paragraph have 
been modified for clarity; the personalization string is now recommended, rather 
than required, to be unique. In Section 7.4, the second item has been modified for 
clarity, and the last paragraph has been removed, since it was not needed here.  

6. Section 8: In Section 8.1, the second sentence has been modified for clarity. In 
Section 8.2, additional text has been added to the last sentence for clarity. In 
Section 8.3, item 1b, the reference to blocks was removed, since it pertained to the 
Dual_EC_DRBG. In Section 8.4, the third sentence is a general statement that 
replaces the last two sentences of that paragraph; the subject with more detail is 
now discussed below Table 1. In the paragraph under Figure 4, text has been 
inserted in teh nsecond sentence for clarity. The first sentence of the next paragraph 
has been modified for clarity, and an additional paragraph has been added to the 
section to mention the relationahip between a DRBG sub-boundary and a 
cryptographic module boundary. 

7. Section 8.5: A reference to the cryptographic boundary for FIPS 140 has been 
inserted in bold to draw the reader’s attention to the fact that it is different than the 
DRBG’s boundaries. In the paragraph under item 3, an example has been provided 
for clarity. In the following two paragraphs, a reference to SP 800-90C has been 
inserted to direct the reader to that document for further discussion on 
cryptographic module boundaries. 

8. Section 8.6: In Section 8.6.2, a reference to fresh entropy has been inserted in the 
second sentence. In Section 8.6.3, text has been inserted at the end of the second 
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sentence for clarity. In Section 8.6.4, a shall statement has been inserted at the end 
of the first sentence. Sections 8.6.5 and 8.6.7 were revised to clarify the source of 
the entropy input and nonce. In Section 8.6.6, text was inserted that states that 
entropy input is a critical security parameter for cryptographic module validation.   
Section 8.6.7 was modified to provide more information about suitable nonces and 
to state that the uniqueness of the nonce is applicable to the cryptographic module 
in which it is used, and to indicate that the nonce is a critical security parameter. In 
Section 8.6.8, text was added about enforcing the seedlife. In Section 8.6.9, 
‘DRBG’ was changed to ‘DRBG instantiation’ for clarity. 

9. Section 8.7: Sections 8.7.1 and 8.7.2 have been modified to clarify that the optional 
personalization string and additional input may be obtained from outside a 
cryptographic module, that the personalization string is not a critical security 
parameter, and that the additional input may be a critical security parameter if 
secret information is included. 

10. Section 8.8: The last sentence of the second paragraph under the list has ‘direct or 
indirect’ inserted for clarity. A paragraph has been added to the end of the section 
to recommend reseeding whenever possible. 

11. Section 9:A paragraph discussing the pseudocode used has been inserted at the 
beginning of the section, and modifications to the third and fourth paragraphs have 
been made for clarity; text has also been added to the next-to-last paragraph that 
dicusses error codes more thoroughly. The last sentence in the third paragraph has 
been modified to only require that the entropy input and nonce be provided as 
discussed in Sections 8.6.5 and 8.6.7 and in SP 800-90C. A paragraph has been 
added to discuss checking the status code. In Section 9.2, clarifying information has 
been inserted about the prediction_resistance_request parameter. In Sections 9.1, 
9.2 and 9.3, returns to the consuming application have been modified for those 
cases where other than SUCCESS is appropriate as a status to be returned from the 
function (e.g., parameter errors, entropy unavailablility or entropy source failure); 
this change was made to better accommodate the various Get_entropy_input 
constructions specified in SP 800-90C. In Section 9.1 and 9.3.1, the item in the list 
referring to elliptic-curve parameters was removed, and the discussion of the status 
output has been modified for clarity. 

12. Section 10: The Dual_EC_DRBG has been removed, and section numbers 
adjusted accordingly. In Section 10.2.1, a paragraph under Table 3 for explanatory 
purposes. In Section 10.2.1.3.2, the first paragraph has been modified for clarity. 
Section 10.2 has been modified to allow the counter field to be a subset of the input 
block and to allow either derivation function specified in the document; this is 
indicated in step 2.1 of Section 10.2.1.2 and step 4.1 of Sections 10.2.1.5.1 and 
10.2.1.5.2 (note that this change continues to allow the use of the entire input block 
as the counter field, as was specified in the previous versions of this document; 
Table 3 has been modified to include restrictions on the length of the counter field 
and to indicate the restrictions on the number of bits that can be requested during a 
single request as a function of the counter-field length and the previous restriction 
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on the number of bits that could be requested. The first paragraphs of Sections 10.3 
and 10.3.2 have been modified slightly for clarity. 

13. Section 11: The third paragraph has been added for clarity, and the last sentence of 
the next paragraph has been removed. In Section 11.1, the references to the 
Dual_EC_DRBG have been removed from the third and fifth bullet, and the 
wording of the next-to-last bullet has been modified to be conditional. In Section 
11.3, the health testing requirements have been modified. 

14. The previous Appendix A was removed; this appendix contained application-
specific constants for the Dual_EC_DRBG. 

15. Appendix B now contains the pseudocode examples previously provided in 
Appendix D, less examples for the Dual_EC_DRBG. In Appendix B.4, the 
disuccion of the example has been changed slightly. 

16. The previous Appendix C was removed; this appendix contained security 
considerations relating to the Dual_EC_DRBG. 

17. The new Appendix C is the same as the previous Appendix E, minus the 
Dual_EC_DRBG discussion. 

18. The referenced documents now in Appendix D have been updated. 

19. The previous Appendix F was removed; this appendix contained a list of shall 
statements that could not be vaidated by NIST’s validation program. 


	1 Introduction
	2 Conformance Testing
	3 Scope
	4 Terms and Definitions
	5 Symbols and Abbreviated Terms
	6 Document Organization
	7 Functional Model of a DRBG
	7.1 Entropy Input
	7.2 Other Inputs
	7.3 The Internal State
	7.4 The DRBG Mechanism Functions

	8. DRBG Mechanism Concepts and General Requirements
	8.1 DRBG Mechanism Functions
	8.2 DRBG Instantiations
	8.3 Internal States
	8.4 Security Strengths Supported by an Instantiation
	8.5 DRBG Mechanism Boundaries
	8.6 Seeds
	8.6.1 Seed Construction for Instantiation
	8.6.2 Seed Construction for Reseeding
	8.6.3 Entropy Requirements for the Entropy Input
	8.6.4 Seed Length
	8.6.5 Randomness Source
	8.6.6 Entropy Input and Seed Privacy
	8.6.7 Nonce
	8.6.8 Reseeding
	8.6.9 Seed Use
	8.6.10 Entropy Input and Seed Separation

	8.7  Other Input to the DRBG Mechanism
	8.7.1 Personalization String
	8.7.2 Additional Input

	8.8 Prediction Resistance and Backtracking Resistance

	9 DRBG Mechanism Functions
	9.1 Instantiating a DRBG
	9.2 Reseeding a DRBG Instantiation
	9.3 Generating Pseudorandom Bits Using a DRBG
	9.3.1 The Generate Function
	9.3.2 Reseeding at the End of the Seedlife
	9.3.3 Handling Prediction Resistance Requests

	9.4 Removing a DRBG Instantiation

	10 DRBG Algorithm Specifications
	10.1 DRBG Mechanisms Based on Hash Functions
	10.1.1 Hash_DRBG
	10.1.1.1  Hash_DRBG Internal State
	10.1.1.2 Instantiation of Hash_DRBG
	10.1.1.3  Reseeding a Hash_DRBG Instantiation
	10.1.1.4  Generating Pseudorandom Bits Using Hash_DRBG

	10.1.2 HMAC_DRBG
	10.1.2.1  HMAC_DRBG Internal State
	10.1.2.2  The HMAC_DRBG Update  Function (Update)
	10.1.2.3 Instantiation of HMAC_DRBG
	10.1.2.4  Reseeding an HMAC_DRBG Instantiation
	10.1.2.5  Generating Pseudorandom Bits Using HMAC_DRBG


	10.2 DRBG Mechanism Based on Block Ciphers
	10.2.1 CTR_DRBG
	10.2.1.1  CTR_DRBG Internal State
	10.2.1.2  The Update Function (CTR_DRBG_Update)
	10.2.1.3  Instantiation of CTR_DRBG
	10.2.1.3.1 Instantiation a Derivation Function is Not Used
	10.2.1.3.2  Instantiation When a Derivation Function is Used

	10.2.1.4  Reseeding a CTR_DRBG Instantiation
	10.2.1.4.1 Reseeding When a Derivation Function is Not Used
	10.2.1.4.2  Reseeding When a Derivation Function is Used

	10.2.1.5  Generating Pseudorandom Bits Using CTR_DRBG
	10.2.1.5.1 Generating Pseudorandom Bits When a Derivation Function is Not Used
	10.2.1.5.2 Generating Pseudorandom Bits When a Derivation Function is Used



	10.3  Auxiliary Functions
	10.3.1 Derivation Function Using a Hash Function (Hash_df)
	10.3.2 Derivation Function Using a Block Cipher Algorithm (Block_Cipher_df)
	10.3.3    BCC and Block_Encrypt


	Supported security strengths
	11 Assurance
	11.1  Minimal Documentation Requirements
	11.2  Implementation Validation Testing
	11.3 Health Testing
	11.3.1 Known Answer Testing
	11.3.2 Testing the Instantiate Function
	11.3.3 Testing the Generate Function
	11.3.4 Testing the Reseed Function
	11.3.5 Testing the Uninstantiate Function
	11.3.6 Error Handling
	11.3.6.1 Errors Encountered During Normal Operation
	11.3.6.2 Errors Encountered During Health Testing



	Appendix A: (Normative) Conversion and Auxilliary Routines
	A.1 Bitstring to an Integer
	A.2 Integer to a Bitstring
	A.3 Integer to a Byte String
	A.4 Byte String to an Integer
	A.5 Converting Random Bits into a Random Number
	A.5.1 The Simple Discard Method
	A.5. 2 The Complex Discard Method
	A.5. 3 The Simple Modular Method
	A.5. 4 The Complex Modular Method


	Appendix B: (Informative) Example Pseudocode for Each DRBG Mechanism
	B.1 Hash_DRBG Example
	B.1.1 Instantiation of Hash_DRBG
	B.1.2 Reseeding a Hash_DRBG Instantiation
	B.1.3 Generating Pseudorandom Bits Using Hash_DRBG

	B.2 HMAC_DRBG Example
	B.2.1 Instantiation of HMAC_DRBG
	B.2.2 Generating Pseudorandom Bits Using HMAC_DRBG

	B.3 CTR_DRBG Example Using a Derivation Function
	B.3.1 The CTR_DRBG_Update Function
	B.3.2 Instantiation of CTR_DRBG Using a Derivation Function
	B.3.3 Reseeding a CTR_DRBG Instantiation Using a Derivation Function
	B.3.4 Generating Pseudorandom Bits Using CTR_DRBG

	B.4 CTR_DRBG Example Without a Derivation Function
	B.4.1 The CTR_DRBG_Update Function
	B.4.2 Instantiation of CTR_DRBG Without a Derivation Function
	B.4.3 Reseeding a CTR_DRBG Instantiation Without a Derivation Function
	B.4.4 Generating Pseudorandom Bits Using CTR_DRBG


	Appendix C: (Informative) DRBG Mechanism Selection
	C.1 Hash_DRBG
	C.2 HMAC_DRBG
	C.3 CTR_DRBG
	C.4 Summary for DRBG Selection

	Appendix D : (Informative) References
	Appendix F : (Informative) Revisions



