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Authority

This publication has been developed by NIST to further its statutory responsibilities under the
Federal Information Security Management Act (FISMA), Public Law (P.L.) 107-347. NIST is
responsible for developing information security standards and guidelines, including minimum
requirements for Federal information systems, but such standards and guidelines shall not apply to
national security systems without the express approval of appropriate Federal officials exercising
policy authority over such systems. This guideline is consistent with the requirements of the Office
of Management and Budget (OMB) Circular A-130, Section 8b(3), Securing Agency Information
Systems, as analyzed in Circular A-130, Appendix IV: Analysis of Key Sections. Supplemental
information is provided in Circular A-130, Appendix Il1, Security of Federal Automated
Information Resources.

Nothing in this publication should be taken to contradict the standards and guidelines made
mandatory and binding on Federal agencies by the Secretary of Commerce under statutory
authority. Nor should these guidelines be interpreted as altering or superseding the existing
authorities of the Secretary of Commerce, Director of the OMB, or any other Federal official. This
publication may be used by nongovernmental organizations on a voluntary basis and is not subject
to copyright in the United States. Attribution would, however, be appreciated by NIST.
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recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or
equipment are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST
in accordance with its assigned statutory responsibilities. The information in this publication, including
concepts and methodologies, may be used by Federal agencies even before the completion of such
companion publications. Thus, until each publication is completed, current requirements, guidelines,
and procedures, where they exist, remain operative. For planning and transition purposes, Federal
agencies may wish to closely follow the development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and
provide feedback to NIST. All NIST Computer Security Division publications, other than the ones
noted above, are available at http://csrc.nist.gov/publications.
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Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test
methods, reference data, proof of concept implementations, and technical analyses to advance the
development and productive use of information technology. ITL’s responsibilities include the
development of management, administrative, technical, and physical standards and guidelines for
the cost-effective security and privacy of other than national security-related information in Federal
information systems. The Special Publication 800-series reports on ITL’s research, guidelines, and
outreach efforts in information system security, and its collaborative activities with industry,
government, and academic organizations.

Abstract

This Recommendation specifies mechanisms for the generation of random bits using
deterministic methods. The methods provided are based on either hash functions or block
cipher algorithms.
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Random Number Generation Using
Deterministic Random Bit Generators

1 Introduction

This Recommendation specifies techniques for the generation of random bits that may then be
used directly or converted to random numbers when random values are required by
applications using cryptography.

There are two fundamentally different strategies for generating random bits. One strategy is to
produce bits non-deterministically, where every bit of output is based on a physical process
that is unpredictable; this class of random bit generators (RBGs) is commonly known as non-
deterministic random bit generators (NRBGSs)!. The other strategy is to compute bits
deterministically using an algorithm; this class of RBGs is known as Deterministic Random
Bit Generators (DRBGs)2.

A DRBG is based on a DRBG mechanism as specified in this Recommendation and
includes a source of randomness. A DRBG mechanism uses an algorithm (i.e., a DRBG
algorithm) that produces a sequence of bits from an initial value that is determined by a
seed that is determined from the input from the randomness source. Once the seed is
provided and the initial value is determined, the DRBG is said to be instantiated and may be
used to produce output. Because of the deterministic nature of the process, a DRBG is said
to produce pseudorandom bits, rather than random bits. The seed used to instantiate the
DRBG must contain sufficient entropy to provide an assurance of randomness. If the seed is
kept secret, and the algorithm is well designed, the bits output by the DRBG will be
unpredictable, up to the instantiated security strength of the DRBG.

The security provided by an RBG that uses a DRBG mechanism is a system
implementation issue; both the DRBG mechanism and its randomness source must be
considered when determining whether the RBG is appropriate for use by consuming
applications.

2 Conformance Testing

Conformance testing for implementations of this Recommendation will be conducted
within the framework of the Cryptographic Module Validation Program (CMVP) and the
Cryptographic Algorithm Validation Program (CAVP). The requirements of this
Recommendation are indicated by the word “shall.” Some of these requirements may be
out-of-scope for CMVP or CAVP validation testing, and thus are the responsibility of

1 NRBGs have also been called True Random Number (or Bit) Generators or Hardware Random Number
Generators.

2 DRBGS have also been called Pseudorandom Number (or Bit) Generators.
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entities using, implementing, installing or configuring applications that incorporate this
Recommendation.

3 Scope

This Recommendation includes:
1. Requirements for the use of DRBG mechanisms,
2. Specifications for DRBG mechanisms that use hash functions and block ciphers,

3. Implementation issues, and
4. Assurance considerations.

This Recommendation specifies several DRBG mechanisms, all of which provided
acceptable security when this Recommendation was published. However, in the event that
new attacks are found on a particular class of DRBG mechanisms, a diversity of approved
mechanisms will allow a timely transition to a different class of DRBG mechanism.

Random number generation does not require interoperability between two entities, e.g.,
communicating entities may use different DRBG mechanisms without affecting their ability
to communicate. Therefore, an entity may choose a single, appropriate DRBG mechanism
for their consuming applications; see Annex C for a discussion of DRBG mechanism
selection.

The precise structure, design and development of a random bit generator is outside the
scope of this document.

NIST Special Publication (SP) 800-90B SP 800-90B provides guidance on designing and
validating entropy sources. SP 800-90C SP 800-90C provides guidance on the construction
of an RBG from a randomness source and an approved DRBG mechanism from this
document (i.e., SP 800-90A).



NIST SP 800-90A, Rev. 1 November 2014

4 Terms and Definitions

Algorithm A clearly specified mathematical process for computation; a
set of rules that, if followed, will give a prescribed result.

Approved FIPS-approved, NIST-Recommended and/or validated by the
Cryptographic Algorithm Validation Program (CAVP).

Approved entropy source | An entropy source that has been validated as conforming to
SP 800-90B.

Backtracking Resistance | An RBG provides backtracking resistance relative to time T if
it provides assurance that an adversary that has knowledge of
the state of the RBG at some time(s) subsequent to time T (but
incapable of performing work that matches the claimed
security strength of the RBG) would be unable to distinguish
between observations of ideal random bitstrings and
(previously unseen) bitstrings that are output by the RBG at or
prior to time T. In particular, an RBG whose design allows the
adversary to "backtrack™ from the initially-compromised RBG
state(s) to obtain knowledge of prior RBG states and the
corresponding outputs (including the RBG state and output at
time T) would not provide backtracking resistance relative to
time T. (Contrast with prediction resistance.)

Biased A value that is chosen from a sample space is said to be biased
if one value is more likely to be chosen than another value.
Contrast with unbiased.

Bitstring A bitstring is an ordered sequence of 0’s and 1’s. The leftmost
bit is the most significant bit of the string and is the newest bit
generated. The rightmost bit is the least significant bit of the

string.

Bitwise Exclusive-Or An operation on two bitstrings of equal length that combines
corresponding bits of each bitstring using an exclusive-or
operation.

Block Cipher A symmetric-key cryptographic algorithm that transforms one

block of information at a time using a cryptographic key. For
a block-cipher algorithm, the length of the input block is the
same as the length of the output block.

Consuming Application The application (including middleware) that uses random
numbers or bits obtained from an approved random bit
generator.
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Cryptographic Key (Key)

A parameter that determines the operation of a cryptographic
function such as:

1. The transformation from plaintext to ciphertext and
vice versa,

2. The generation of keying material,
3. A digital signature computation or verification.

Deterministic Algorithm

An algorithm that, given the same inputs, always produces the
same outputs.

Deterministic Random
Bit Generator (DRBG)

An RBG that includes a DRBG mechanism and (at least
initially) has access to a randomness source. The DRBG
produces a sequence of bits from a secret initial value called a
seed, along with other possible inputs. A DRBG is often
called a Pseudorandom Number (or Bit) Generator.

DRBG Mechanism

The portion of an RBG that includes the functions necessary
to instantiate and uninstantiate the RBG, generate
pseudorandom bits, (optionally) reseed the RBG and test the
health of the the DRBG mechanism.

DRBG Mechanism

A conceptual boundary that is used to explain the operations

Boundary of a DRBG mechanism and its interaction with and relation to
other processes. (See min-entropy.)
Entropy A measure of the disorder, randomness or variability in a

closed system. Min-entropy is the measure used in this
Recommendation.

Entropy Input

An input bitstring that provides an assessed minimum amount
of unpredictability for a DRBG mechanism. (See min-
entropy.)

Entropy Source

A combination of a noise source (e.g., thermal noise or hard
drive seek times), health tests, and an optional conditioning

component. The Entropy Source produces random bitstrings
to be used by an RBG.

Equivalent Process

Two processes are equivalent if, when the same values are
input to each process, the same output is produced.

Exclusive-or

A mathematical operation; the symbol @, defined as:

020=0 l1®0=1
01l=1 1®1=0

Equivalent to binary addition without carry.
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Fresh Entropy

A bitstring output from a randomness source for which there
is a negligible probability that it has been previously output by
the source and a negligible probability that the bitstring has
been previously used by the DRBG.

Full Entropy

For the purposes of this Recommendation, an n-bit string is
said to have full entropy if that bitstring is estimated to contain
at least (1—)n bits of entropy, where 0 < £< 2°%. A source of
full-entropy bitstrings serves as a practical approximation to a
source of ideal random bitstrings of the same length (see ideal
random sequence).

Hash Function

A (mathematical) function that maps values from a large
(possibly very large) domain into a smaller range. The
function satisfies the following properties:

1. (One-way) It is computationally infeasible to find any
input that maps to any pre-specified output;

2. (Collision free) It is computationally infeasible to find
any two distinct inputs that map to the same output.

Health Testing

Testing within an implementation immediately prior to or
during normal operation to determine that the implementation
continues to perform as implemented and as validated

Ideal Random Bitstring

See Ideal Random Sequence.

Ideal Random Sequence

Each bit of an ideal random sequence is unpredictable and
unbiased, with a value that is independent of the values of the
other bits in the sequence. Prior to the observation of the
sequence, the value of each bit is equally likely to be 0 or 1,
and the probability that a particular bit will have a particular
value is unaffected by knowledge of the values of any or all of
the other bits. An ideal random sequence of n bits contains n
bits of entropy.

Implementation

An implementation of an RBG is a cryptographic device or
portion of a cryptographic device that is the physical
embodiment of the RBG design, for example, some code
running on a computing platform.

Implementation Testing
for Validation

Testing by an independent and accredited party to ensure that
an implemention of this Recommendation conforms to the
specifications of this Recommendation.

Instantiation of an RBG

An instantiation of an RBG is a specific, logically
independent, initialized RBG. One instantiation is
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distinguished from another by a “handle” (e.g., an identifying
number).

Internal State

The collection of stored information about a DRBG
instantiation. This can include both secret and non-secret
information.

Key

See Cryptographic Key.

Min-entropy

The min-entropy (in bits) of a random variable X is the largest
value m having the property that each observation of X
provides at least m bits of information (i.e., the min-entropy of
X is the greatest lower bound for the information content of
potential observations of X). The min-entropy of a random
variable is a lower bound on its entropy. The precise
formulation for min-entropy is —(log, max p;) for a discrete
distribution having probabilities ps,..., p,. Min-entropy is
often used as a worst-case measure of the unpredictability of a
random variable. Also see SP 800-90B.

Non-Deterministic
Random Bit Generator
(Non-deterministic RBG)
(NRBG)

An RBG that always has access to an entropy source and
(when working properly) produces output bitstrings that have
full entropy. Often called a True Random Number (or Bit)
Generator. (Contrast with a deterministic random bit
generator (DRBG)).

Nonce

A time-varying value that has at most a negligible chance of
repeating, e.g., a random value that is generated anew for each
use, a timestamp, a sequence number, or some combination of
these.

Personalization String

An optional string of bits that is combined with a secret
entropy input and (possibly) a nonce to produce a seed.

Prediction Resistance

An RBG provides prediction resistance relative to time T if it
provides assurance that an adversary with knowledge of the
state of the RBG at some time(s) prior to T (but incapable of
performing work that matches the claimed security strength of
the RBG) would be unable to distinguish between
observations of ideal random bitstrings and (previously
unseen) bitstrings output by the RBG at or subsequent to time
T. In particular, an RBG whose design allows the adversary to
step forward from the initially compromised RBG state(s) to
obtain knowledge of subsequent RBG states and the
corresponding outputs (including the RBG state and output at
time T) would not provide prediction resistance relative to
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time T. (Contrast with backtracking resistance.)

Pseudorandom

A process (or data produced by a process) is said to be
pseudorandom when the outcome is deterministic, yet also
effectively random, as long as the internal action of the
process is hidden from observation. For cryptographic
purposes, “effectively” means “within the limits of the
intended cryptographic strength.”

Pseudorandom Number
Generator

See Deterministic Random Bit Generator.

Random Number

For the purposes of this Recommendation, a value in a set that
has an equal probability of being selected from the total
population of possibilities and, hence, is unpredictable. A
random number is an instance of an unbiased random variable,
that is, the output produced by a uniformly distributed random
process.

Random Bit Generator
(RBG)

A device or algorithm that outputs a sequence of binary bits
that appears to be statistically independent and unbiased. An
RBG is either a DRBG or an NRBG.

Randomness Source

A component of a DRBG that outputs bitstrings that is used as
entropy input by a DRBG mechanism.

Reseed

To acquire additional bits that will affect the internal state of
the DRBG mechanism.

Secure Channel

A path for transferring data between two entities or
components that ensures confidentiality, integrity and replay
protection, as well as mutual authentication between the
entities or components. The secure channel may be provided
using approved cryptographic, physical or procedural
methods, or a combination thereof.

Security Strength

A number associated with the amount of work (that is, the
number of operations of some sort) that is required to break a
cryptographic algorithm or system in some way. In this
Recommendation, the security strength is specified in bits and
is a specific value from the set {112, 128, 192, 256}. If the
security strength associated with an algorithm or system is S
bits, then it is expected that (roughly) 2° basic operations are
required to break it.

Seed

Noun : A string of bits that is used as input to a DRBG
mechanism. The seed will determine a portion of the internal
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state of the DRBG, and its entropy must be sufficient to
support the security strength of the DRBG.

Verb : To acquire bits with sufficient entropy for the desired
security strength. These bits will be used as input to a DRBG
mechanism to determine a portion of the initial internal state.
Also see reseed.

Seedlife The length of the seed period.

Seed Period The period of time between instantiating or reseeding a DRBG
with one seed and reseeding that DRBG with another seed.

Sequence An ordered set of quantities.

Shall Used to indicate a requirement of this Recommendation.

Should Used to indicate a highly desirable feature for a DRBG

mechanism that is not necessarily required by this
Recommendation.

Source of Randomness

See Randomness Source.

String

See Bitstring.

Unbiased

A value that is chosen from a sample space is said to be
unbiased if all potential values have the same probability of
being chosen. Contrast with biased.

Unpredictable

In the context of random bit generation, an output bit is
unpredictable if an adversary has only a negligible advantage
(that is, essentially not much better than chance) in predicting
it correctly.

Working State

A subset of the internal state that is used by a DRBG
mechanism to produce pseudorandom bits at a given point in
time. The working state (and thus, the internal state) is
updated to the next state prior to producing another string of
pseudorandom bits.
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5 Symbols and Abbreviated Terms

The following abbreviations are used in this Recommendation:

Abbreviation Meaning

AES Advanced Encryption Standard, as specified in FIPS197.

DRBG Deterministic Random Bit Generator.

FIPS Federal Information Processing Standard.

HMAC Keyed-Hash Message Authentication Code, as specified in FIP198.
NIST National Institute of Standards and Technology

NRBG Non-deterministic Random Bit Generator.

RBG Random Bit Generator.

SP NIST Special Publication

TDEA Triple Data Encryption Algorithm, as specified in SP800-67.

The following symbols are used in this Recommendation:

Symbol Meaning
+ Addition
XeY Bitwise exclusive-or (also bitwise addition modulo 2) of two bitstrings
X and Y of the same length.
XY Concatenation of two strings X and Y. X and Y are either both bitstrings,

or both byte strings.

leftmost (V, a)

Selects the leftmost a bits of V, i.e., the most significant a bits of V.

len (a) The length in bits of string a.
min(a, b) The minimum of a and b.
x mod n The unique remainder r (where 0 < r < n-1) when integer x is divided

by n. For example, 23 mod 7 = 2.

rightmost (V, a)

Selects the rightmost a bits of V; i.e., the least significant a bits of V.

©

Used in a figure to illustrate a "switch™ between input sources.

{ay, ...ai}

The internal state of the DRBG at a point in time. The types and
number of the a; depends on the specific DRBG mechanism.
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Symbol Meaning

Oxab Hexadecimal notation that is used to define a byte (i.e., 8 bits) of
information, where a and b each specify 4 bits of information and have
values from the range {0, 1, 2,...F}. For example, 0xc6 is used to
represent 11000110, where c is 1100, and 6 is 0110.

0 A string of x zero bits.

6 Document Organization

This Recommendation is organized as follows:

— Section 7 provides a functional model for a DRBG that uses a DRBG mechanism
and discusses the major components of the DRBG mechanim.

— Section 8 provides concepts and general requirements for the implementation and
use of a DRBG mechanism.

— Section 9 specifies the functions of a DRBG mechanism that are introduced in
Section 8. These functions use the DRBG algorithms specified in Section 10.

— Section 10 specifies approved DRBG algorithms. Algorithms have been specified
that are based on the hash functions specified in FIPS 180, and the block cipher
algorithms specified in FIPS197 and SP 800-67 (AES and TDEA, respectively).

— Section 11 addresses assurance issues for DRBG mechanisms, including
documentation requirements, implementation validation and health testing.

This Recommendation also includes the following appendices:
— Appendix A provides conversion routines.

— Appendix B provides example pseudocode for each DRBG mechanism. Examples
of the values computed for the DRBGSs using each approved cryptographic
algorithm and key size are available at
http://csrc.nist.gov/groups/ST/toolkit/examples.html under the entries for SP 800-
90A.

— Appendix C provides a discussion on DRBG mechanism selection.
— Appendix D provides references.

— Appendix E provides a list of modifications to SP 800-90A since it was first
published.

10
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7 Functional Model of a DRBG

Figure 1 provides a functional model of a DRBG (i.e., one type of RBG). A DRBG shall
implement an approved DRBG mechanism from SP 800-90A and at least one approved
randomness source, and may include additional optional sources, including sources for
nonces, personalization strings, and additional input. The components of this model are
discussed in the following subsections. DRBG constructions are also discussed in SP
800-90C.

Consuming Application

Person: ulization String Additional Input

I e o e e e e e e i e e e e s e s e s e e s e e s

DRBG Mechanism

Figure 1: DRBG Functional Model

7.1 Entropy Input

Entropy input is provided to a DRBG mechanism for the seed (see Section 8.6) using a
randomness source. The entropy input and the seed shall be kept secret. The secrecy of this
information provides the basis for the security of the DRBG. At a minimum, the
randomness source shall provide the amount of entropy requested by the DRBG
mechanism. Appropriate randomness sources are discussed in Section 8.6.5.

Ideally, the entropy input would have full entropy; however, the DRBG mechanisms have
been specified so that input with full entropy is not required. This is accommodated by
allowing the length of the entropy input to be longer than the required entropy (expressed in
bits), as long as the total entropy meets the requirements of the DRBG mechanism. The
entropy input can be defined to be of variable length (within specified limits), as well as
fixed length. In all cases, the DRBG mechanism expects that when entropy input is

11
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requested, the returned bitstring will contain at least the requested amount of entropy.
Additional entropy beyond the amount requested is not required, but is desirable.

7.2 Other Inputs

Other information may be obtained by a DRBG mechanism as input. This information may
or may not be required to be kept secret by a consuming application; however, the security
of the DRBG itself does not rely on the secrecy of this information. The information should
be checked for validity when possible; for example, if time is used as an input, the format
and reasonableness of the time could be checked. In most cases, a nonce is required during
instantiation (see Sections 8.6.1 and 8.6.7). When required, the nonce is combined with the
entropy input to create the initial DRBG seed.

A personalization string should be used during DRBG instantiation; when used, the
personalization string is combined with the entropy input bits and possibly a nonce to create
the initial DRBG seed. The personalization string should be unique for all instantiations of
the same DRBG mechanism type (e.g., all instantiations of HMAC_DRBG). See Section
8.7.1 for additional discussion on personalization strings.

Additional input may also be provided during reseeding and when pseudorandom bits are
requested. See Section 8.7.2 for a discussion of this input.

7.3 The Internal State

The internal state is the memory of the DRBG and consists of all of the parameters,
variables and other stored values that the DRBG mechanism uses or acts upon. The internal
state contains both administrative data (e.g., the security strength) and data that is acted
upon and/or modified during the generation of pseudorandom bits (i.e., the working state).

7.4 The DRBG Mechanism Functions

The DRBG mechanism functions handle the DRBG’s internal state. The DRBG
mechanisms in this Recommendation have five separate functions:

1. The instantiate function acquires entropy input and may combine it with a nonce
and a personalization string to create a seed from which the initial internal state is
created.

2. The generate function generates pseudorandom bits upon request, using the current
internal state and possibly additional input; a new internal state for the next request
is also generated.

3. The reseed function acquires new entropy input and combines it with the current
internal state and any additional input that is provided to create a new seed and a
new internal state.

4. The uninstantiate function zeroizes (i.e., erases) the internal state.

12
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5. The health test function determines that the DRBG mechanism continues to function
correctly.

13
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8. DRBG Mechanism Concepts and General Requirements

8.1 DRBG Mechanism Functions

A DRBG mechanism requires instantiate, uninstantiate, generate, and health testing
functions. A DRBG mechanism includes an optional reseed function. A DRBG shall be
instantiated prior to the generation of output by the DRBG. These functions are specified
in Section 9.

8.2 DRBG Instantiations

A DRBG may be used to obtain Instantiate: | Initialize with seed, |
pseudorandom bits for different
purposes (e.g., DSA private keys Seed period |
and AES keys) and may be v _
separately instantiated for each [€Opt) Reseed withved., |
purpose, thus effectively creating Seed period 2
two DRBGs. v

| (Opt.) Reseed with seed, |

A DRBG is instantiated using a seed
and may be reseeded; when
reseeded, the seed shall be different
than the seed used for instantiation.
Each seed defines a seed period for

Seed periods 3 ton

the DRBG instantiation; an

instantiation consists of one or more Figure 2: DRBG Instantiation

seed periods that begin when a new

seed is acquired and end when the next seed is obtained or the DRBG is no longer used
(see Figure 2).

8.3 Internal States
During instantiation, an initial internal state is derived from the seed. The internal state for
an instantiation includes:

1. The working state:

a. One or more values that are derived from the seed and become part of the
internal state; these values shall remain secret, and

b. A count of the number of requests produced since the instantiation was seeded
or reseeded.

2. Administrative information (e.g., security strength and prediction resistance flag).

The internal state shall be protected at least as well as the intended use of the
pseudorandom output bits requested by the consuming application. A DRBG mechanism
implementation may be designed to handle multiple instantiations. Each DRBG

14
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instantiation shall have its own internal state. The internal state for one DRBG
instantiation shall not be used as the internal state for a different instantiation.

8.4 Security Strengths Supported by an Instantiation

The DRBG mechanisms specified in this Recommendation support four security strengths:
112, 128, 192 or 256 bits. The security strength for the instantiation is requested during
DRBG instantiation, and the instantiate function obtains the appropriate amount of entropy
for the requested security strength. Each DRBG mechanism has restrictions on the security
strength it can support, based on its design (see Section 10).

The actual security strength supported by a given instantiation depends on the DRBG
implementation and on the amount of entropy provided to the instantiate function. Note
that the security strength actually supported by a particular instantiation could be less than
the maximum security strength possible for that DRBG implementation (see Table 1). For
example, a DRBG that is designed to support a maximum security strength of 256 bits
could, instead, be instantiated to support only a 128-bit security strength if the additional
security provided by the 256-bit security strength is not required (i.e., by requesting only
128 bits of entropy during instantiation, rather than 256 bits of entropy).

Table 1: Possible Instantiated Security Strengths

Maximum Designed 112 128 192 256
Security Strength

Possible Instantiated 112 112,128 112,128,192 | 112, 128, 192,
Security Strengths 256

Following instantiation, a request can be made to the generate function for pseudorandom
bits (see Section 9.3). The pseudorandom bits returned from a DRBG shall not be used for
any application that requires a higher security strength than the DRBG is instantiated to
support. The security strength provided in these returned bits is the minimum of the
security strength supported by the DRBG and the length of the bit string returned, i.e.:

Security_strength_of output = min(output_length, DRBG_security_strength).

A concatenation of bit strings resulting from multiple calls to a DRBG will not provide a
security strength for the concatenated string that is greater than the instantiated security
strength of the DRBG. For example, two 128-bit output strings requested from a DRBG
that supports a128-bit security strength cannot be concatenated to form a 256-bit string
with a security strength of 256 bits. A more complete discussion of this issue is provided in
SP 800-90C.

For each generate request, the security strength to be provided for the bits is requested.
Any security strength can be requested during a call to the generate function, up to the
security strength of the instantiation, e.g., an instantiation could be instantiated at the 128-
bit security strength, but a request for pseudorandom bits could indicate that a lesser
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security strength is actually required for the bits to be generated. Assuming that the request
is valid, the requested number of bits is returned.

When an instantiation is used for multiple purposes, the minimum entropy requirement for
each purpose must be considered. The DRBG needs to be instantiated for the highest
security strength required. For example, if one purpose requires a security strength of 112
bits, and another purpose requires a security strength of 256 bits, then the DRBG needs to
be instantiated to support the 256-bit security strength.

8.5 DRBG Mechanism Boundaries

As a convenience, this Recommendation uses the notion of a “DRBG mechanism
boundary” to explain the operations of a DRBG mechanism and its interaction with and
relation to other processes; a DRBG mechanism boundary contains all DRBG mechanism
functions and internal states required for a DRBG. Data enters a DRBG mechanism
boundary via the DRBG’s public interfaces, which are made available to consuming
applications.

The DRBG mechanism boundary should not be confused with a cryptographic
module boundary, as specified in FIPS 140; the relationship between a cryptographic
module boundary and a DRBG boundary is mentioned below, but is more fully
discussed in SP 800-90C.

Within a DRBG mechanism boundary,

1. The DRBG internal state and the operation of the DRBG mechanism functions
shall only be affected according to the DRBG mechanism specification.

2. The DRBG internal state shall exist solely within the DRBG mechanism boundary.
The internal state shall not be accessible by non-DRBG functions or other
instantiations of that or other DRBGs.

3. Information about secret parts of the DRBG internal state and intermediate values
in computations involving these secret parts shall not affect any information that
leaves the DRBG mechanism boundary, except as specified for the DRBG
pseudorandom bit outputs.

Each DRBG mechanism includes one or more cryptographic primitives (i.e., a hash
function or block-cipher algortihnm). Other applications may use the same cryptographic
primitive, but the DRBG’s internal state and the DRBG mechanism functions shall not be
affected by these other applications. For example, a DRBG mechanism may use the same
hash-function code as a digital-signature application.

A DRBG mechanism’s functions may be contained within a single device, or may be
distributed across multiple devices (see Figures 3 and 4). Figure 3 depicts a DRBG for
which all functions are contained within the same device. As further discussed in SP 800-
90C, the DRBG mechanism boundary is contained within a cryptographic module
boundary.
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Figure 4 provides an example of DRBG
mechanism functions that are distributed
across multiple devices. In this case, each
device has a DRBG mechanism sub-
boundary that contains the DRBG
mechanism functions implemented on that
device, and the DRBG mechanism sub-
boundary is contained within a
cryptographic module boundary, as is
further discussed in SP 800-90C. The
boundary around the entire DRBG
mechanism includes the aggregation of sub-
boundaries providing the DRBG
mechanism functionality. Each sub-
boundary may be contained within a
different cryptographic module boundary or
multiple sub-boundaries may be contained
within the same cryptographic module
boundary.

November 2014

DRBG Mechanism B dary

Instantiate ——»  Instantiate
Function

‘ Entropy

—_— J Input
—]

E— Reseed

Reseed

Instantiation Function

Generate

Request Bits Function

—

States

Test ——= Test
DRBG +——

Function

I

Uninstantiate

DRBG Uninstantiate

Function

Figure 3: DRBG Mechanism Functions
within a Single Device

The use of distributed DRBG-mechanism functions may be convenient for restricted
environments (e.g., smart card applications) in which the primary use of the DRBG does
not require repeated use of the instantiate or reseed functions.

Each DRBG mechanism boundary or sub-boundary shall contain a test function to test the

Secure Channel

DRBG Mechanism Sub-Boundary
(Instantiate)

Entropy Input
I
I 1
: Uninstantiate Instantiate
| Function Function
I
| Test
| Function
I
I
I

Generate Test

Function | | Function

DRBG Mechanism Sub-Boundary
(Generate)

DRBG Mechanism Boundary

Figure 4: Distributed DRBG Mechanism Functions

“health” of other DRBG-mechanism functions within that boundary. In addition, a
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boundary or sub-boundary that contains an instantiate function shall contain an
uninstantiate function in order to perform and/or react to health testing.

When DRBG mechanism functions are distributed, a physically or cryptographically
secure channel shall be used to protect the confidentiality and integrity of the internal state
or parts of the internal state that are transferred between the distributed DRBG mechanism
sub-boundaries. The security provided by the secure channel shall be consistent with the
security required by the consuming application. See Section 4 for a more complete
definition of a secure channel.

For distributed DRBGs, each sub-boundary is the same as or is fully contained within a
cryptographic module boundary.

8.6 Seeds

When a DRBG is used to generate pseudorandom bits, a seed shall be acquired prior to the
generation of output bits by the DRBG. The seed is used to instantiate the DRBG and
determine the initial internal state that is used when calling the DRBG to obtain the first
output bits.

Reseeding is a means of restoring the secrecy of the output of the DRBG if a seed or the
internal state becomes known. Periodic reseeding is a good way of addressing the threat of
either the DRBG seed, entropy input or working state being compromised over time. In
some implementations (e.g., smartcards), an adequate reseeding process may not be
possible. In these cases, the best policy might be to replace the DRBG, obtaining a new
seed in the process (e.g., obtain a new smart card).

The seed and its use by a DRBG mechanism shall be generated and handled as specified in
the following subsections.

8.6.1 Seed Construction for Instantiation

Figure 5 depicts the seed-construction

process for instantiation. The seed Ent (Optional)

. . ntropy T . .
material used to determine a seed for I“;u‘t" Nonce Personalization
instantiation consists of entropy input String

from a randomness source, a nonce

and an optional personalization string.
Entropy input shall always be used in Opt.
the construction of a seed; df
requirements for the entropy input are
discussed in Section 8.6.3. Except for

the case noted below, a nonce shall be Seed
used; requirements for the nonce are
discussed in Section 8.6.7. A Figure 5: Seed Construction for Instantiation

personalization string should also be
used; requirements for the
personalization string are discussed in Section 8.7.1.
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Depending on the DRBG mechanism

and the randomness source, a derivation . | Entroby (Optional)
function may be required to derive a '"te'\__."a’::lf'ate‘ ],,I,Jt‘ Additional
seed from the seed material. However, ‘ Input
in certain circumstances, the DRBG

mechanism based on block cipher v

algorithms (see Section 10.2) may be Opt.

implemented without a derivation df

function. When implemented in this

manner, a (separate) nonce (as shown in Seed

Figure 5) is not used. Note, however,

that the personalization string could Figure 6: Seed Construction for Reseeding

contain a nonce, if desired.
8.6.2 Seed Construction for Reseeding

Figure 6 depicts the seed construction process for reseeding an instantiation. The seed
material for reseeding consists of a value that is carried in the internal state3, new entropy
input (i.e., with fresh entropy) and, optionally, additional input. The internal state value
and the entropy input are required; requirements for the entropy input are discussed in
Section 8.6.3. Requirements for the additional input are discussed in Section 8.7.2. As in
Section 8.6.1, a derivation function may be required for reseeding.

8.6.3 Entropy Requirements for the Entropy Input

The entropy input shall have entropy that is equal to or greater than the security strength of
the instantiation. Additional entropy may be provided in the nonce or the optional
personalization string during instantiation, or in the additional input during reseeding and
generation, but this is not required and does not increase the “official” security strength of
the DRBG instantiation that is recorded in the internal state. The use of more entropy than
the minimum value will offer a security “cushion”. This may be useful if the assessment of
the entropy provided in the entropy input is incorrect. Having more entropy than the assessed
amount is acceptable; having less entropy than the assessed amount could be fatal to security.
The presence of more entropy than is required, especially during the instantiation, will
provide a higher level of assurance than the minimum required entropy.

8.6.4 Seed Length

The minimum length of the seed depends on the DRBG mechanism and the security
strength required by the consuming application, but shall be at least the number of bits of
entropy required. See the tables in Section 10.

3 See each DRBG mechanism specification for the value that is used.
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8.6.5 Randomness Source

A DRBG mechanism requires a randomness source during instantiation and reseeding,
including whenever prediction resistance is requested (see Section 8.8). This input is
requested using the Get_entropy_input function introduced in Section 9 and is specified
in more detail in SP 800-90C.

8.6.6 Entropy Input and Seed Privacy

The entropy input and the resulting seed shall be handled in a manner that is consistent
with the security required for the data protected by the consuming application. For
example, if the DRBG is used to generate keys, then the entropy inputs and seeds used to
generate the keys shall (at a minimum) be protected as well as the keys.

The security of the DRBG depends on the secrecy of the entropy input. For this reason,
the entropy input shall be treated as a critical security parameter (CSP) during
cryptographic module validation.

8.6.7 Nonce

A nonce may be required in the construction of a seed during instantation in order to
provide a security cushion to block certain attacks. The nonce shall be either:

a. A value with at least (security_strength/2) bits of entropy, or

b. A value that is expected to repeat no more often than a (1/2 security_strength)-bit
random string would be expected to repeat.

Each nonce shall be unique to the cryptographic module in which instantiation is
performed, but need not be secret. When used, the nonce shall be considered to be a
critical security parameter. A nonce may be composed of one (or more) of the following
components (other components may also be appropriate):

1. Arandom value that is generated anew for each nonce, using an approved random
bit generator.

2. A timestamp of sufficient resolution (detail) so that it is different each time it is
used.

A monotonically increasing sequence number, or

4. A combination of a timestamp and a monotonically increasing sequence number,
such that the sequence number is reset when and only when the timestamp changes.
(For example, a timestamp may show the date but not the time of day, so a
sequence number is appended that will not repeat during a particular day.)

For case 1 above, the random value could be acquired from the same source and at the
same time as the entropy input. In this case, the seed could be considered to be constructed
from an “extra strong” entropy input and the optional personalization string, where the
entropy for the entropy input is equal to or greater than (3/2 security_strength) bits.
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For case 2 above, the timestamp must be trusted. A trusted timestamp is generated and
signed by an entity that is trusted to provide accurate time information.

The nonce provides greater assurance that the DRBG provides security_strength bits of
security to the consuming application. If a DRBG were instantiated many times without a
nonce, a compromise could become more likely. In some consuming applications, a single
DRBG compromise could reveal long-term secrets (e.g., a compromise of the DSA per-
message secret could reveal the signing key).

The requirement for the generation of a nonce within a cryptographic-module boundary
does not preclude the generation of the nonce in a cryptographic module that is different
from the cryptographic boundary containing the DRBG function with which the nonce is
used (e.g., the cryptographic module boundary containing an instantiate function).
However, in this scenario, there needs to be a secure channel to transport the nonce
between the cryptographic-module boundaries. See the discussion of distributed DRBGs in
Section 8.5 and distributed RBGs in SP 800-90C.

8.6.8 Reseeding

Generating too many outputs from a seed (and other input information) may provide
sufficient information for successfully predicting future outputs (see Section 8.8). Periodic
reseeding will reduce security risks, reducing the likelihood of a compromise of the data
that is protected by cryptographic mechanisms that use the DRBG.

Seeds have a finite seedlife (i.e., the number of outputs that are produced during a seed
period); the maximum seedlife is dependent on the DRBG mechanism used.
Implementations shall enforce the limits on seedlife specified for the DRBG mechanism
used or more stringent limits selected by the implementer. When a DRBG's maximum
seedlife is reached, the DRBG shall not generate outputs until it has been reseeded.

Reseeding is accomplished by 1) an explicit reseeding of the DRBG by the consuming
application, 2) by the generate function when prediction resistance is requested (see
Section 8.8) or 3) when the end of the seed life is determined during the generate function
(see Section 9.3.1).

The reseeding of the DRBG shall be performed in accordance with the specification for a
given DRBG mechanism. The DRBG reseed specifications within this Recommendation
are designed to produce a new seed that is determined by both the old seed and newly
obtained entropy input that will support the desired security strength.

An alternative to reseeding would be to create an entirely new instantiation. However,
reseeding is preferred over creating a new instantiation. If a DRBG instantiation was
initially seeded with sufficient entropy, and the randomness source subsequently fails
without being detected, then a new instantiation using the same (failed) source would not
have sufficient entropy to operate securely. However, if there is an undetected failure in the
randomness source of an already properly seeded DRBG instantiation, the DRBG
instantiation will still retain any previous entropy when the reseed operation fails to
introduce new entropy.
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8.6.9 Seed Use

The seed that is used to initialize one instantiation of a DRBG shall not be intentionally
used to reseed the same instantiation or used as the seed for another DRBG instantiation.
In addition, a DRBG instantiation shall not reseed itself. Note that a DRBG does not
provide output until a seed is available, and the internal state has been initialized (see
Section 10).

8.6.10  Entropy Input and Seed Separation

The seed used by a DRBG and the entropy input used to create that seed shall not
intentionally be used for other purposes (e.g., domain parameter or prime number
generation).

8.7  Other Input to the DRBG Mechanism

Other input may be provided during DRBG instantiation, generation and reseeding. This
input may contain entropy, but this is not required. During instantiation, a personalization
string may be provided and combined with entropy input and a nonce to derive a seed (see
Section 8.6.1). When pseudorandom bits are requested and when reseeding is performed,
additional input may be provided (see Section 8.7.2).

Depending on the method for acquiring the input, the exact value of the input may or may
not be known to the user or consuming application. For example, the input could be
derived directly from values entered by the user or consuming application, or the input
could be derived from information introduced by the user or consuming application (e.g.,
from timing statistics based on key strokes), or the input could be the output of another
RBG.

8.7.1 Personalization String

A personalization string is an optional input to the instantiate function and is used to derive
the seed (see Section 8.6.1). The personalization string may be obtained from inside or
outside a cryptographic module, and may be an empty string. Note that a DRBG does not
rely on a personalization string to provide entropy, even though entropy could be provided
in the personalization string, and knowledge of the personalization string by an adversary
does not degrade the security strength of a DRBG instantiation, as long as the entropy
input is unknown. When used within a cryptograhic module, a personalization string is not
considered to be a critical security parameter.

The personalization string may contain secret information, but shall not include secret
information that requires protection at a higher security strength than the DRBG being
instantiated will support. For example, a personalization string to be used to instantiate a
DRBG at 112 bits of security strength shall not include information requiring 128 bits of
protection. A given implementation of a DRBG may support the use of a personalization
string, but is not required to do so.
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The intent of a personalization string is to introduce additional input into the instantiation
of a DRBG. This personalization string might contain values unknown to an attacker, or
values that tend to differentiate this DRBG instantiation from all others. Ideally, a
personalization string will be set to some bitstring that is as unique as possible. Good
sources for the personalization string contents include:

Application identifiers, e Special key values for this specific

Device serial numbers, DRBG instantiation,

User identification, Protocol version identifiers,

Per-module or per-device values, Random numbers,

Timestamps, Nonces, and

Network addresses, Outputs from other approved or non-
approved random bit generators.

8.7.2 Additional Input

Additional input may optionally be provided to the reseed and generate functions during
requests. The additional input may be obtained from inside or outside a cryptographic
module, and may include secret or public information. Note that a DRBG does not rely on
additional input to provide entropy, even though entropy could be provided in the
additional input, and knowledge of the additional input by an adversary does not degrade
the security strength of a DRBG. However, if the additional input contains secret/private
information (e.g., a social security number), that information shall not require protection at
a higher security strength than the security strength supported by the DRBG. A given
implementation of a DRBG may include the additional input, but is not required to do so.
When used within a cryptograhic module, the additional input used in DRBG requests is
not considered to be a critical security parameter unless any secret information included in
the additional input qualifies as a critical security parameter.

Additional input is optional for both the DRBG and the consuming application, and the
ability to enter additional input may or may not be included in an implementation. The
value of the additional input may be either secret or publicly known; its value is arbitrary,
although its length may be restricted, depending on the implementation and the DRBG
mechanism. The use of additional input may be a means of providing more entropy for the
DRBG internal state that will increase assurance that the entropy requirements are met. If
the additional input is kept secret and has sufficient entropy, the input can provide more
assurance when recovering from the compromise of the entropy input, the seed or one or
more DRBG internal states.

8.8 Prediction Resistance and Backtracking Resistance

Figure 7 depicts the sequence of DRBG internal states that result from a given seed. Some
subset of bits from each internal state are used to generate pseudorandom bits upon request
by a user. The following discussions will use the figure to explain backtracking and
prediction resistance.
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Suppose that a compromise occurs at State,, where State, contains both secret and non-
secret information.

Seed —» State, State, | * ¢ * |State,,|[State , || State || State,,|[State | * ¢ ©

Figure 7: Sequence of DRBG States

Backtracking Resistance: Backtracking resistance is provided relative to time T if there is
assurance that an adversary who has knowledge of the internal state of the DRBG at some
time subsequent to time T would be unable to distinguish between observations of ideal
random bitstrings and (previously unseen) bitstrings that were output by the DRBG prior to
time T. This assumes that the adversary is incapable of performing the work required to
negate the claimed security strength of the DRBG. Backtracking resistance means that a
compromise of the DRBG internal state has no effect on the security of prior outputs. That
is, an adversary who is given access to all of the prior output sequence cannot distinguish it
from random output with less work than is associated with the security strength of the
instantiation; if the adversary knows only part of the prior output, he cannot determine any
bit of that prior output sequence that he has not already seen with better than a 50-50
chance.

For example, suppose that an adversary knows State,. Backtracking resistance means that:

a. The output bits from State; to State,.; cannot be distinguished from random output,
and

b. The prior internal state values themselves (State; to Statey.;) cannot be recovered,
given knowledge of the secret information in State,.

Backtracking resistance can be provided by ensuring that the DRBG generation algorithm
is a one-way function. All DRBG mechanisms in this Recommendation have been
designed to provide backtracking resistance.

Prediction Resistance: Prediction resistance means that a compromise of the DRBG
internal state has no effect on the security of future DRBG outputs. That is, an adversary
who is given access to all of the output sequence after the compromise cannot distinguish it
from random output with less work than is associated with the security strength of the
instantiation; if the adversary knows only part of the future output sequence, he cannot
predict any bit of that future output sequence that he does not already known (with better
than a 50-50 chance).

For example, suppose that an adversary knows State,: Prediction resistance means that:

a. The output bits from State,.1 and forward cannot be distinguished from an ideal
random bitstring by the adversary, and
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b. The future internal state values themselves (State,.+; and forward) cannot be
predicted (with better than a 50-50 chance), given knowledge of State.

Prediction resistance is provided relative to time T if there is assurance that an adversary
with knowledge of the state of the RBG at some time(s) prior to T (but incapable of
performing work that matches the claimed security strength of the RBG) would be unable
to distinguish between observations of ideal random bitstrings and (previously unseen)
bitstrings output by the RBG at or subsequent to time T. In particular, an RBG whose
design allows the adversary to step forward from the initially compromised RBG state(s) to
obtain knowledge of subsequent RBG states and the corresponding outputs (including the
RBG state and output at time T) would not provide prediction resistance relative to time T.

Prediction resistance can be provided only by ensuring that a DRBG is effectively reseeded
with fresh entropy between DRBG requests. That is, an amount of entropy that is
sufficient to support the security strength of the DRBG being reseeded (i.e., an amount that
is at least equal to the security strength) must be provided to the DRBG in a way that
ensures that knowledge of the current DRBG internal state does not allow an adversary any
useful knowledge about future DRBG internal states or outputs. Prediction resistance can
be provided when the randomness source is or has direct or indirect access to an entropy
source or an NRBG (see Section 8.6.5).

For example, suppose that an adversary knows internal statey., (see Figure 7). If the
adversary also knows the DRBG mechanism used, he then has enough information to
compute state,.; and statey. If prediction is then requested for the next bits that are to be
output from the DRBG, new entropy bits will be inserted into the DRBG instantiation that
will create a "barrier"” between state, and statey.1, i.e., the adversary will not be able to
compute statey.s, sSimply by knowing statey; the work required will be greatly increased by
the entropy inserted during the prediction request.

The introduction of fresh entropy via reseeding will also make the DRBG less susceptible
to cryptanalytic attack. Whenever an entropy source is available, it is strongly
recommended that DRBGs be requested to provide prediction resistance as often as is
practical.
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9 DRBG Mechanism Functions

All DRBG mechanisms and algorithms are described in this document in pseudocode,
which is intended to explain functionality. The pseudocode is not intended to constrain
real-world implementations.

Except for the health test function, which is discussed in Section 11.3, the functions of the
DRBG mechanisms in this Recommendation are specified as an algorithm and an
“envelope” of pseudocode around that algorithm. The pseudocode in the envelopes
(provided in this section) checks the input parameters, obtains input not provided via the
input parameters, accesses the appropriate DRBG algorithm and handles the internal state.
A function need not be implemented using such envelopes, but the function shall have
equivalent functionality.

During instantiation and reseeding (see Sections 9.1 and 9.2), entropy input and (usually) a
nonce are acquired for constructing a seed as discussed in Sections 8.6.1 and 8.6.2. In the
specifications of this Recommendation, a Get_entropy_input function is used for this
purpose. The entropy input and nonce shall be provided as discussed in Sections 8.6.5 and
8.6.7 and in SP 800-90C.

The Get_entropy_input function is specified in pseudocode in SP 800-90C for various
RBG constructions; however, in general, the function has the following meaning:

Get_entropy_input: A function that is used to obtain entropy input. The function call
is:

(status, entropy_input) = Get_entropy_input (min_entropy, min_ length,
max_ length, prediction_resistance_request),

which requests a string of bits (entropy_input) with at least min_entropy bits of
entropy. The length for the string shall be equal to or greater than min_length bits, and
less than or equal to max_length bits. The prediction_resistance_request parameter
indicates whether or not prediction resistance is to be provided during the request (i.e.,
whether fresh entropy is required4). A status code is also returned from the function.

Note that an implementation may choose to define this functionality differently by
omitting some of the parameters; for example, for many of the DRBG mechanisms,
min_length = min_entropy for the Get_entropy_input function, in which case, the second
parameter could be omitted.

In the pseudocode in this section, two classes of error codes are returned: ERROR_FLAG
and CATASTROPHIC_ERROR_FLAG. The handling of these classes of error codes is
discussed in Section 11.3.6. The error codes may, in fact, provide information about the

4 Entropy input may be obtained from an entropy source or an NRBG, both of which provide fresh entropy.
Entropy input could also be obtained from a DRBG that may or may not have access to an entropy source or
NRBG.

The request for prediction resistance rules out the use of a DRBG that does not have access to either an
entropy source or NRBG.
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reason for the error; for example, when ERROR_FLAG is returned because of an incorrect
input parameter, the ERROR_FLAG may indicate the problem.

Consuming applications should check the status returned from DRBG functions to
determine whether or not the request was successful or if remediary action is required. For
example, when the instantitate function returns an error, an instantiation will not have been
created, and an invalid state_handle will be returned (see Section 9.1); however, the lack
of a state_handle will be detected in a subsequent reseed or generate request. When the
reseed function returns an error (see Section 9.2), the indicated instantiation will not have
been reseeded (i.e., the internal state will not heve been injected with fresh entropy). When
the generate function returns an error, a null string is returned as the output string (see
Section 9.3.1) and shall not be used as pseudorandom output.

Comments are often included in the pseudocode in this Recommendation. A comment
placed on a line that includes pseudocode applies to that line; a comment placed on a line
containing no pseudocode applies to one or more lines of pseudocode immediately below
that comment.

9.1 Instantiating a DRBG
A DRBG shall be instantiated prior to the generation of pseudorandom bits. The instantiate
function:
1. Checks the validity of the input parameters,
Determines the security strength for the DRBG instantiation,
Obtains entropy input with entropy sufficient to support the security strength,
Obtains the nonce (if required),
Determines the initial internal state using the instantiate algorithm, and

I

If an implemention supports multiple simultaneous instantiations of the same
DRBG, a state_handle for the internal state is returned to the consuming
application (see below).

Let working_state be the working state for the particular DRBG mechanism (e.g.,
HMAC_DRBG), and let min_length, max_ length, and
highest_supported_security_strength be defined for each DRBG mechanism (see Section
10). Let Instantiate_algorithm be a call to the appropriate instantiate algorithm for the
DRBG mechanism (see Section 10).

The following or an equivalent process shall be used to instantiate a DRBG.

Instantiate_function (requested_instantiation_security_strength,
prediction_resistance_flag, personalization_string):

1. requested instantiation_security_strength: A requested security strength for the
instantiation. Implementations that support only one security strength do not
require this parameter; however, any consuming application using that
implementation must be aware of the security strength that is supported.
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2. prediction_resistance_flag: Indicates whether or not prediction resistance may be
required by the consuming application during one or more requests for
pseudorandom bits. Implementations that always provide or do not support
prediction resistance may not need to support this parameter if the intent is
implicitly known. However, the user of a consuming application must determine
whether or not prediction resistance may be required by the consuming application
before electing to use such an implementation. If the prediction_resistance_flag is
not needed (i.e., because prediction resistance is always performed or is not
supported), then the prediction_resistance_flag input parameter and instantiate
process step 2 are omitted, and the prediction_resistance_flag is omitted from the
internal state in step 11 of the instantiate process. In addition, step 6 can be
modified to not perform a check for the prediction_resistance_flag when the flag is
not used in an implementation; in this case, the Get_entropy_input call need not
include the prediction_resistance_request parameter.

3. personalization_string: An optional input that provides personalization information
(see Sections 8.6.1 and 8.7.1). The maximum length of the personalization string
(max_personalization_string_length) is implementation dependent, but shall be
less than or equal to the maximum length specified for the given DRBG mechanism
(see Section 10). If the input of a personalization string is not supported, then the
personalization_string input parameter and step 3 of the instantiate process are
omitted, and instantiate process step 9 is modified to omit the personalization
string.

Required information not provided by the consuming application during
instantiation (This information shall not be provided by the consuming application as an
input parameter during the instantiate request):

1. entropy_input: Input bits containing entropy. The maximum length of the
entropy_input is implementation dependent, but shall be less than or equal to the
specified maximum length for the selected DRBG mechanism (see Section 10).

2. nonce: A nonce as specified in Section 8.6.7. Note that if a random value is used in
the nonce, the entropy_input and random portion of the nonce could be acquired
using a single Get_entropy_input call (see step 6 of the instantiate process); in this
case, the first parameter of the Get_entropy_input call is adjusted to include the
entropy for the nonce (i.e., the security_strength is increased by at least ¥2
security_strength, and min-length is increased to accommodate the length of the
nonce), instantiate process step 8 is omitted, and the nonce is omitted from the
parameter list in instantiate process step 9.

Note that in some cases, a nonce will not be used by a DRBG mechanism; in this
case, step 8 is omitted, and the nonce is omitted from the parameter list in
instantiate process step 9.

Output to a consuming application after instantiation:

1. status: The status returned from the instantiate function. If any status other than
SUCCESS is returned, either no state_handle or an invalid state _handle shall be
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returned to the consuming application. A consuming application should check the
status to determine that the DRBG has been correctly instantiated.

2. state_handle: Used to identify the internal state for this instantiation in subsequent
calls to the generate, reseed, uninstantiate and test functions.

If a state handle is not required for an implementation because the implementation
does not support multiple simultaneous instantiations, a state_handle need not be
returned. In this case, instantiate process step 10 is omitted, process step 11 is
revised to save the only internal state, and process step 12 is altered to omit the
state_handle.

Information retained within the DRBG mechanism boundary after instantiation:

The internal state for the DRBG, including the working_state and administrative
information (see Sections 8.3 and 10 for definitions of the working_state and
administrative information).

Instantiate Process:
Comment: Check the validity of the input
parameters.

1. If requested_instantiation_security_strength >
highest_supported_security_strength, then return (ERROR_FLAG, Invalid).

2. If prediction_resistance_flag is set, and prediction resistance is not supported, then
return (ERROR_FLAG, Invalid).

3. If the length of the personalization_string > max_personalization_string_length,
return (ERROR_FLAG, Invalid).

4. Set security_strength to the lowest security strength greater than or equal to
requested_instantiation_security_strength from the set {112, 128, 192, 256}.

5. Null step. Comment: This null step replaces a step from
the original version of SP 800-90 without
changing the step numbers.

Comment: Obtain the entropy input.

6. (status, entropy_input) = Get_entropy_input (security_strength, min_length,
max_length, prediction_resistance_request).

Comment: status indications other than
SUCCESS could be ERROR_FLAG or
CATASTROPHIC_ERROR_FLAG, in
which case, the status is returned to the
consuming application to handle. In this case,
ERROR_FLAG could be returned because
entropy is currently unavailable, and
CATASTROPHIC_ERROR_FLAG could
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be returned, for example, because an entropy
source failed.

7. If (status # SUCCESS), return (status, Invalid).

8. Obtain a nonce. Comment: This step shall include any
appropriate checks on the acceptability of the
nonce. See Section 8.6.7.

Comment: Call the appropriate instantiate
algorithm in Section 10 to obtain values for
the initial working_state.

9. initial_working_state = Instantiate_algorithm (entropy_input, nonce,
personalization_string, security_strength).

10. Get a state_handle for a currently empty internal state. If an empty internal state
cannot be found, return (ERROR_FLAG, Invalid).

11. Set the internal state for the new instantiation (e.g., as indicated by state_handle) to
the initial values for the internal state (i.e., set the working_state to the values
returned as initial_working_state in step 9 and any other values required for the
working_state (see Section 10), and set the administrative information to the
appropriate values (e.g., the values of security_strength and the
prediction_resistance_flag).

12. Return (SUCCESS, state_handle).

9.2 Reseeding a DRBG Instantiation

The reseeding of an instantiation is not required, but is recommended whenever a
consuming application and implementation are able to perform this process. Reseeding
will insert additional entropy input into the generation of pseudorandom bits. Reseeding
may be:

e Explicitly requested by a consuming application,
e Performed when prediction resistance is requested by a consuming application,

e Triggered by the generate function when a predetermined number of
pseudorandom outputs have been produced or a predetermined number of generate
requests have been made (i.e., at the end of the seedlife), or

e Triggered by external events (e.g., whenever entropy is available).
The reseed function:

1. Checks the validity of the input parameters,

2. Obtains entropy input from a randomness source that supports the security strength
of the DRBG, and
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3. Using the reseed algorithm, combines the current working state with the new
entropy input and any additional input to determine the new working state.

Let working_state be the working state for the particular DRBG instantiation (e.g.,
HMAC _DRBG), let min_length and max_ length be defined for each DRBG mechanism,
and let Reseed_algorithm be a call to the appropriate reseed algorithm for the DRBG
mechanism (see Section 10).

The following or an equivalent process shall be used to reseed the DRBG instantiation.
Reseed_function (state_handle, prediction_resistance_request, additional_input):

1) state_handle: A pointer or index that indicates the internal state to be reseeded. If a
state handle is not used by an implementation because the implemention does not
support multiple simultaneous instantiations, a state_handle is not provided as
input. Since there is only a single internal state in this case, reseed process step 1
obtains the contents of the internal state, and process step 6 replaces the
working_state of this internal state.

2) prediction_resistance_request: Indicates whether or not prediction resistance is to
be provided during the request (i.e., whether or not fresh entropy bits are
required)>. Without the explicit prediction resistance request, the entropy input
could be provided from either a DRBG with no access to an entropy source (i.e.,
fresh entropy would not be provided), or the entropy input could be provided by an
entropy source or by an RBG with access to an entropy source (i.e., fresh entropy
would be provided in these cases).

DRBGs that are implemented to always support prediction resistance or to never
support prediction resistance do not require this parameter. However, when
prediction resistance is not supported, the user of a consuming application must
determine whether or not prediction resistance may be required by the application
before electing to use such a DRBG implementation.

If prediction resistance is not supported, then the prediction_resistance request
input parameter and step 2 of the reseed process is omitted, and reseed process step
4 is modified to omit the prediction_resistance_request parameter.

If prediction resistance is always performed, then the prediction_resistance_request
input parameter and reseed process step 2 may be omitted, and reseed process step
4 is replaced by:

(status, entropy_input) = Get_entropy_input (security_strength, min_length,
max_length)

5 A DRBG may be reseeded by an entropy source or an NRBG, both of which provide fresh entropy. A
DRBG could also be reseeded by a DRBG that may or may not have access to an entropy source or NRBG.
The request for prediction resistance during reseeding rules out the use of a DRBG that does not have access
to either an entropy source or NRBG. See SP 800-90C for further discussion.
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3) additional_input: An optional input. The maximum length of the additional_input
(max_additional_input_length) is implementation dependent, but shall be less than
or equal to the maximum value specified for the given DRBG mechanism (see
Section 10). If the input by a consuming application of additional_input is not
supported, then the input parameter and step 2 of the reseed process are omitted,
and step 5 of the reseed process is modified to remove the additional_input from
the parameter list.

Required information not provided by the consuming application during reseeding
(This information shall not be provided by the consuming application as an input
parameter during the reseed request):

1. entropy_input: Input bits containing entropy. This input shall not be provided by
the DRBG instantiation being reseeded. The maximum length of the entropy_input
is implementation dependent, but shall be less than or equal to the specified
maximum length for the selected DRBG mechanism (see Section 10).

2. Internal state values required by the DRBG for the working_state and
administrative information, as appropriate.
Output to a consuming application after reseeding:
1. status: The status returned from the function.

Information retained within the DRBG mechanism boundary after reseeding:
Replaced internal state values (i.e., the working_state).
Reseed Process:

Comment: Get the current internal state and
check the input parameters.

1. Using state_handle, obtain the current internal state. If state_handle indicates an
invalid or unused internal state, return (ERROR_FLAG).

2. If prediction_resistance_request is set, and prediction_resistance_flag is not set,
then return (ERROR_FLAG).

3. If the length of the additional_input > max_additional _input_length, return
(ERROR_FLAG).

Comment: Obtain the entropy input.

4. (status, entropy_input) = Get_entropy_input (security_strength, min_length,
max_length, prediction_resistance_request).

Comment: status indications other than
SUCCESS could be ERROR_FLAG or
CATASTROPHIC_ERROR_FLAG, in
which case, the status is returned to the
consuming application to handle. In this case,
ERROR_FLAG could be returned because
entropy is currently unavailable, and
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CATASTROPHIC_ERROR_FLAG could
be returned because an entropy source failed.

If (status = SUCCESS), return (status).

Comment: Get the new working_state using
the appropriate reseed algorithm in Section
10.

new_working_state = Reseed_algorithm (working_state, entropy_input,
additional_input).

Replace the working_state in the internal state for the DRBG instantiation (e.g., as
indicated by state_handle) with the values of new_working_state obtained in step
6.

Return (SUCCESS).

9.3 Generating Pseudorandom Bits Using a DRBG

This function is used to generate pseudorandom bits after instantiation or reseeding. The
generate function:

1.
2.

3.
4.
5.

9.3.1

Checks the validity of the input parameters.

Calls the reseed function to obtain sufficient entropy if the instantiation needs
additional entropy because the end of the seedlife has been reached or prediction
resistance is required; see Sections 9.3.2 and 9.3.3 for more information on
reseeding at the end of the seedlife and on handling prediction resistance requests.

Generates the requested pseudorandom bits using the generate algorithm.
Updates the working state.
Returns the requested pseudorandom bits to the consuming application.

The Generate Function

Let outlen be the length of the output block of the cryptographic primitive (see Section 10).
Let Generate_algorithm be a call to the appropriate generate algorithm for the DRBG
mechanism (see Section 10), and let Reseed_function be a call to the reseed function in
Section 9.2.

The following or an equivalent process shall be used to generate pseudorandom bits.

Generate_function (state_handle, requested_number_of_bits,
requested_security_strength, prediction_resistance_request, additional _input):

1.

state_handle: A pointer or index that indicates the internal state to be used. If a
state handle is not used by an implementation because the implemention does not
support multiple simultaneous instantiations, a state_handle is not provided as
input. The state_handle is then omitted from the input parameter list in process step
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7.1, generate process steps 1 and 7.3 are used to obtain the contents of the internal
state, and process step 10 replaces the working_state of this internal state.

2. requested_number_of bits: The number of pseudorandom bits to be returned from
the generate function. The max_number_of_bits_per_request is implementation
dependent, but shall be less than or equal to the value provided in Section 10 for a
specific DRBG mechanism.

3. requested_security_strength: The security strength to be associated with the
requested pseudorandom bits. DRBG implementations that support only one
security strength do not require this parameter; however, any consuming
application using that DRBG implementation must be aware of the supported
security strength.

4. prediction_resistance_request: Indicates whether or not prediction resistance is to
be provided during the request. DRBGs that are implemented to always provide
prediction resistance or that do not support prediction resistance do not require this
parameter. However, when prediction resistance is not supported, the user of a
consuming application must determine whether or not prediction resistance may be
required by the application before electing to use such a DRBG implementation.

If prediction resistance is not supported, then the prediction_resistance_request
input parameter and steps 5 and 9.2 of the generate process are omitted, and
generate process steps 7 and 7.1 are modified to omit the check for the
prediction_resistance_request term.

If prediction resistance is always performed, then the prediction_resistance_request
input parameter and generate process steps 5 and 9.2 may be omitted, and generate
process steps 7 and 8 may be replaced by:

status = Reseed_function (state_handle, additional_input).

Comment: status indications other than
SUCCESS could be ERROR_FLAG or
CATASTROPHIC_ERROR_FLAG, in
which case, the status is returned to the
consuming application to handle. In this case,
ERROR_FLAG could be returned because
entropy is currently unavailable, and
CATASTROPHIC_ERROR_FLAG could
be returned because an entropy source failed.

If (status = SUCCESS), return (status, Null).
Using state_handle, obtain the new internal state.

(status, pseudorandom_bits, new_working_state) = Generate_algorithm
(working_state, requested_number_of _bits).

Note that if the input of additional_input is not supported, then the additional _input
parameter in the Reseed_function call above may be omitted.
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5. additional_input: An optional input. The maximum length of the additional_input
(max_additional_input_length) is implementation dependent, but shall be less than
or equal to the specified maximum length for the selected DRBG mechanism (see
Section 10). If the input of additional_input is not supported, then the input
parameter, generate process steps 4 and 7.4, and the additional _input input
parameter in generate process steps 7.1 and 8 are omitted.

Required information not provided by the consuming application during generation:

1. Internal state values required for the working_state and administrative information,
as appropriate.

Output to a consuming application after generation:

1. status: The status returned from the generate function. If any status other than
SUCCESS is returned, a Null string shall be returned as the pseudorandom bits.

2. pseudorandom_bits: The pseudorandom bits that were requested or a Null string.
Information retained within the DRBG mechanism boundary after generation:
Replaced internal state values (i.e., the new working_state).
Generate Process:

Comment: Get the internal state and check the
input parameters.

1. Using state_handle, obtain the current internal state for the instantiation. If
state_handle indicates an invalid or unused internal state, then return
(ERROR_FLAG, Null).

2. If requested_number_of bits > max_number_of bits_per_request, then return
(ERROR_FLAG, Null).

3. If requested_security_strength > the security_strength indicated in the internal
state, then return (ERROR_FLAG, Null).

4. If the length of the additional_input > max_additional_input_length, then return
(ERROR_FLAG, Null).

5. If prediction_resistance_request is set, and prediction_resistance_flag is not set,
then return (ERROR_FLAG, Null).

6. Clear the reseed_required_flag. Comment: See Section 9.3.2 for a discussion.

Comment: Reseed if necessary (see Section
9.2).

7. If reseed_required_flag is set, or if prediction_resistance_request is set, then

7.1 status = Reseed_function (state_handle, prediction_resistance_request,
additional_input).

Comment: status indications other than
SUCCESS could be ERROR_FLAG or
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10.

11.

CATASTROPHIC_ERROR_FLAG, in
which case, the status is returned to the
consuming application to handle. In this case,
ERROR_FLAG could be returned because
entropy is currently unavailable, and
CATASTROPHIC_ERROR_FLAG could
be returned because an entropy source failed.

7.2 If (status # SUCCESS), then return (status, Null).
7.3 Using state_handle, obtain the new internal state.
7.4 additional_input = the Null string.

7.5 Clear the reseed_required_flag.

Comment: Request the generation of
pseudorandom_bits using the appropriate
generate algorithm in Section 10.

(status, pseudorandom_bits, new_working_state) = Generate_algorithm
(working_state, requested_number_of bits, additional_input).

If status indicates that a reseed is required before the requested bits can be
generated, then

9.1 Setthe reseed required_flag.

9.2 If the prediction_resistance_flag is set, then set the prediction_resistance
request indication.

9.3 Gotostep?7.

Replace the old working_state in the internal state of the DRBG instantiation (e.g.,
as indicated by state_handle) with the values of new_working_state.

Return (SUCCESS and pseudorandom_bits).

Implementation notes:

If a reseed capability is not supported, or a reseed is not desired, then generate process
steps 6 and 7 are removed; and generate process step 9 is replaced by:

9.

9.3.2

If status indicates that a reseed is required before the requested bits can be
generated, then

9.1 status = Uninstantiate_function (state_handle).
9.2 Return an indication that the DRBG instantiation can no longer be used.

Reseeding at the End of the Seedlife

When pseudorandom bits are requested by a consuming application, the generate function
checks whether or not a reseed is required by comparing the counter within the internal
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state (see Section 8.3) against a predetermined reseed interval for the DRBG
implementation. This is specified in the generate process (see Section 9.3.1) as follows:

a. Step 6 clears the reseed_required_flag.

b. Step 7 checks the value of the reseed_required_flag. At this time, the
reseed required_flag is clear, so step 7 is skipped unless prediction resistance was
requested by the consuming application. For the purposes of this explanation,
assume that prediction resistance was not requested.

c. Step 8 calls the Generate_algorithm, which checks whether a reseed is required. If
it is required, an appropriate status is returned.

d. Step 9 checks the status returned by the Generate_algorithm. If the status does
not indicate that a reseed is required, the generate process continues with step 10.

e. However, if the status indicates that a reseed is required (see step 9), then the
reseed required_flag is set, the prediction_resistance_request indicator is set if the
instantiation is capable of performing prediction resistance, and processing
continues by going back to step 7. This is intended to obtain fresh entropy for
reseeding at the end of the reseed interval whenever access to fresh entropy is
available (see the concept of Live Entropy sources in SP 800-90C).

f. The substeps in step 7 are executed. The reseed function is called; any
additional_input provided by the consuming application in the generate request is
used during reseeding. The new values of the internal state are acquired, any
additional_input provided by the consuming application in the generate request is
replaced by a Null string, and the reseed_required_flag is cleared.

g. The generate algorithm is called (again) in step 8, the check of the returned status is
made in step 9, and (presumably) step 10 is then executed.

9.3.3 Handling Prediction Resistance Requests

When pseudorandom bits are requested by a consuming application with prediction
resistance, the generate function specified in Section 9.3.1 checks that the instantiation
allows prediction resistance requests (see step 5 of the generate process); clears the
reseed_required_flag (even though the flag won’t be used in this case); executes the
substeps of generate process step 7, resulting in a reseed, a new internal state for the
instantiation, and setting the additional input to a Null value; obtains pseudorandom bits
(see generate process step 8); passes through generate process step 9, since another reseed
will not be required; and continues with generate process step 10.

9.4 Removing a DRBG Instantiation

The internal state for an instantiation may need to be “released” by erasing (i.e., zeroizing)
the contents of the internal state. The uninstantiate function:

1. Checks the input parameter for validity, and
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2. Empties the internal state.

The following or an equivalent process shall be used to remove (i.e., uninstantiate) a
DRBG instantiation:

Uninstantiate_function (state_handle) :

1. state_handle: A pointer or index that indicates the internal state to be “released”. If
a state handle is not used by an implementation because the implemention does not
support multiple simultaneous instantiations, a state_handle is not provided as
input. In this case, process step 1 is omitted, and process step 2 erases the internal
state.

Output to a consuming application after uninstantiation:
1. status: The status returned from the function.
Information retained within the DRBG mechanism boundary after uninstantiation:
An empty internal state.
Uninstantiate Process:
1. If state_handle indicates an invalid state, then return (ERROR_FLAG).
2. Erase the contents of the internal state indicated by state_handle.

3. Return (SUCCESS).
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10 DRBG Algorithm Specifications

Several DRBG mechanisms are specified in this Recommendation. The selection of a
DRBG mechanism depends on several factors, including the security strength to be
supported and what cryptographic primitives are available. An analysis of the consuming
application’s requirements for random numbers should be conducted in order to select an
appropriate DRBG mechanism. Conversion specifications required for the DRBG
mechanism implementations (e.g., between integers and bitstrings) are provided in
Appendix A. Pseudocode examples for each DRBG mechanism are provided in Appendix
B. A detailed discussion on DRBG mechanism selection is provided in Appendix C.

10.1 DRBG Mechanisms Based on Hash Functions

A DRBG mechanism may be based on a hash function that is non-invertible or one-way.
The hash-based DRBG mechanisms specified in this Recommendation have been designed
to use any approved hash function and may be used by consuming applications requiring
various security strengths, providing that the appropriate hash function is used and
sufficient entropy is obtained for the seed.

The following are provided as DRBG mechanisms based on hash functions:
1. The Hash_DRBG specified in Section 10.1.1.
2. The HMAC_DRBG specified in Section 10.1.2.

The maximum security strength that can be supported by each DRBG based on a hash
function is the security strength of the hash function used; the security strengths for the
hash functions when used for random number generation are provided in SP 800-57]
However, this Recommendation supports only four security strengths: 112, 128, 192, and
256 bits. Table 2 specifies the values that shall be used for the function envelopes and
DRBG algorithm for each approved hash function.

Table 2: Definitions for Hash-Based DRBG Mechanisms

SHA-1 | SHA-224 | SHA-256 | SHA-384 | SHA-512
and SHA- and
512/224 SHA-
512/256
Supported security strengths See SP 800-57
highest_supported_security_strength See SP 800-57
Output Block Length (outlen) 160 224 256 384 512
Required minimum entropy for security_strength
instantiate and reseed
Minimum entropy input length security_strength
(min_length)
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SHA-1 | SHA-224 | SHA-256 | SHA-384 | SHA-512
and SHA- and
512/224 SHA-
512/256

Maximum entropy input length < 2% bits
(max_ length)
Seed length (seedlen) for 440 440 440 888 888
Hash DRBG
Maximum personalization string < 2% bits
length
(max_personalization_string_length)
Maximum additional_input length < 2% bits
(max_additional_input_length)
max_number_of_bits_per_request < 2% bits
Number of requests between <2
reseeds (reseed_interval)

Note that since SHA-224 is based on SHA-256, there is no efficiency benefit when using
SHA-224, rather than SHA-256. Also note that since SHA-384, SHA-512/224 and SHA-
512/256 are based on SHA-512, there is no efficiency benefit for using these three SHA
mechanisms, rather than using SHA-512. However, efficiency is just one factor to consider
when selecting the appropriate hash function to use as part of a DRBG mechanism.

10.1.2  Hash_DRBG

Figure 8 presents the normal operation of the Hash_DRBG generate algorithm. The
Hash_DRBG requires the use of a hash function during the instantiate, reseed and
generate functions; the same hash function shall be used throughout a Hash_DRBG
instantiation. Hash_ DRBG uses the derivation function specified in Section 10.3.1 during
instantiation and reseeding. The hash function to be used shall meet or exceed the desired
security strength of the consuming application.

10.1.1.1 Hash_DRBG Internal State

The internal_state for Hash_DRBG consists of:
1. The working_state:
a. A value (V) of seedlen bits that is updated during each call to the DRBG.
b. A constant C of seedlen bits that depends on the seed.

c. A counter (reseed_counter) that indicates the number of requests for
pseudorandom bits since new entropy_input was obtained during instantiation
or reseeding.
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2. Administrative information:
a. The security_strength of the o e

DRBG instantiation.

b. A prediction_resistance_flag
that indicates whether or not a x| v || Mditonal

prediction resistance

capability is available for the

DRBG instantiation.

The values of V and C are the critical
values of the internal state upon which
the security of this DRBG mechanism
depends (i.e., V and C are the “secret
values” of the internal state).

10.1.1.2 |Instantiation of
Hash DRBG

Notes for the instantiate function
specified in Section 9.1:

The instantiation of Hash_ DRBG
requires a call to the
Instantiate_function specified in
Section 9.1. Process step 9 of that
function calls the instantiate
algorithm in this section.

The values of

V  isput C  counter

input

Hash
Function

0x03 | V

Ellmln io obtain 1
| ceooughbits 4.  Counter v reseed ¢
' (From 1): counter

Hash L Ppseudorandom Bits
Function !

highest_supported_security_strength
and min_length are provided in Table
2 of Section 10.1. The contents of the
internal state are provided in Section

10.1.1.1.

The instantiate algorithm:

Figure 8: Hash_DRBG

Let Hash_df be the hash derivation function specified in Section 10.3.1 using the
selected hash function. The output block length (outlen), seed length (seedlen) and
appropriate security_strengths for the implemented hash function are provided in Table

2 of Section 10.1.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG mechanism (see step 9 of the instantiate process in Section 9.1).

Hash_DRBG_Instantiate_algorithm (entropy_input, nonce, personalization_string,

security_strength):

1. entropy_input: The string of bits obtained from the randomness source.
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2. nonce: A string of bits as specified in Section 8.6.7.

3. personalization_string: The personalization string received from the consuming
application. Note that the length of the personalization_string may be zero.

4. security_strength: The security strength for the instantiation. This parameter is
optional for Hash_DRBG, since it is not used.

Output:

1. initial_working_state: The inital values for V, C, and reseed_counter (see
Section 10.1.1.1).

Hash_DRBG Instantiate Process:
1. seed material = entropy_input || nonce || personalization_string.
2. seed = Hash_df (seed_material, seedlen).

3. V =seed.

4. C =Hash_df ((0x00 || V), seedlen). Comment: Preceed V with a byte of
zeros.

5. reseed counter = 1.

6. ReturnV, C, and reseed_counter as the initial_working_state.
10.1.1.3 Reseeding a Hash_DRBG Instantiation

Notes for the reseed function specified in Section 9.2:

The reseeding of a Hash_DRBG instantiation requires a call to the Reseed_function.
Process step 6 of that function calls the reseed algorithm specified in this section. The
values for min_length are provided in Table 2 of Section 10.1.

The reseed algorithm:

Let Hash_df be the hash derivation function specified in Section 10.3.1 using the
selected hash function. The value for seedlen is provided in Table 2 of Section 10.1.

The following process or its equivalent shall be used as the reseed algorithm for this
DRBG mechanism (see step 6 of the reseed process in Section 9.2):

Hash_DRBG_Reseed_algorithm (working_state, entropy_input, additional_input):

1. working_state: The current values for V, C, and reseed_counter (see Section
10.1.1.2).

2. entropy_input: The string of bits obtained from the randomness source.

3. additional_input: The additional input string received from the consuming
application. Note that the length of the additional_input string may be zero.

Output:
1. new_working_state: The new values for V, C, and reseed counter.
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Hash_ DRBG Reseed Process:
1. seed material = 0x01 || V || entropy_input || additional_input.
2. seed = Hash_df (seed_material, seedlen).
3. V =seed.

4. C =Hash_df ((0x00 || V), seedlen). Comment: Preceed with a byte of all
Zeros.

5. reseed counter = 1.
6. ReturnV, C, and reseed_counter for the new_working_state.

10.1.1.4 Generating Pseudorandom Bits Using Hash_DRBG

Notes for the generate function specified in Section 9.3:

The generation of pseudorandom bits using a Hash_DRBG instantiation requires a call
to the generate function. Process step 8 of that function calls the generate algorithm
specified in this section. The values for max_number_of _bits_per_request and outlen
are provided in Table 2 of Section 10.1.

The generate algorithm:

Let Hash be the selected hash function. The seed length (seedlen) and the maximum
interval between reseeding (reseed_interval) are provided in Table 2 of Section 10.1.
Note that for this DRBG mechanism, the reseed counter is used to update the value of
V, as well as to count the number of generation requests.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG mechanism (see step 8 of the generate process in Section 9.3):

Hash_DRBG_Generate_algorithm (working_state, requested_number_of_bits,
additional_input):

1. working_state: The current values for V, C, and reseed_counter (see Section
10.1.1.1).

2. requested_number_of _bits: The number of pseudorandom bits to be returned to
the generate function.

3. additional_input: The additional input string received from the consuming
application. Note that the length of the additional_input string may be zero.

Output:

1. status: The status returned from the function. The status will indicate
SUCCESS, or indicate that a reseed is required before the requested
pseudorandom bits can be generated.

2. returned_bits: The pseudorandom bits to be returned to the generate function.
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3.

new_working_state: The new values for V, C, and reseed_counter.

Hash_DRBG Generate Process:

1.

N oo g bk~ w

If reseed_counter > reseed_interval, then return an indication that a reseed is
required.

If (additional_input = Null), then do

2.1 w = Hash (0x02 || V || additional_input).

2.2V = (V + w) mod 2¢edlen,

(returned_bits) = Hashgen (requested_number_of bits, V).
H = Hash (0x03 || V).

V =(V+H + C +reseed_counter) mod 2%¢%".

reseed counter = reseed_counter + 1.

Return SUCCESS, returned_bits, and the new values of V, C, and
reseed_counter for the new_working_state.

Hashgen (requested_number_of bits, V):

Input:
1.
2.

requested _no_of _bits: The number of bits to be returned.
V: The current value of V.

Output:
1. returned_bits: The generated bits to be returned to the generate function.

Hashgen Process:

1.

requested no of bits
m= .
outlen

data=V.

3. W =the Null string.

Fori=1tom

4.1 w; = Hash (data).

42W=W | w;

4.3 data = (data + 1) mod 25",

returned_bits = leftmost (W, requested_no_of_bits).
Return returned_bits.
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10.1.2 HMAC_DRBG

HMAC_DRBG uses multiple occurrences of an approved keyed hash function, which is
based on an approved hash function. This DRBG mechanism uses the
HMAC_DRBG_Update function specified in Section 10.1.2.2 and the HMAC function
within the HMAC_DRBG_Update function as the derivation function during instantiation
and reseeding. The same hash function

shall be used throughout an (Opt) additional input
HMAC_DRBG instantiation. The hash
function used shall meet or exceed the IF# Null

security requirements of the consuming |
application. | UPDATE

Figure 9 depicts the HMAC_DRBG in | S
three stages. HMAC_DRBG is specified
using an internal function
(HMAC_DRBG_Update). This function
is called during the HMAC_DRBG
instantiate, generate and reseed algorithms

to adjust the internal state when new e
entropy or additional input is provided, as ' |
well as to update the internal state after
pseudorandom bits are generated. The
operations in the top portion of the figure

Key | v reseed
counter

reseed
counter

Key | v

are only performed if the additional input I v

is not null. Figure 10 depictsthe | T

HMAC_DRBG_Update function. B
|

10.1.2.1 HMAC_DRBG Internal o
State seudorandom bits

additional input

The internal state for HMAC DRBG

consists of:
1. The working_state: State v v
a. The value V of outlen bits, Key| Vv |reseed | .. UPDATE
which is updated each time 1 [ T
another outlen bits of output el ‘

are produced (where outlen is
specified in Table 2 of Section
10.2).

b. The outlen-bit Key, which is
updated at least once each time Figure 9: HMAC_DRBG Generate Function
that the DRBG mechanism
generates pseudorandom bits.
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c. A counter (reseed_counter) that indicates the number of requests for
pseudorandom bits since instantiation or reseeding.

2. Administrative information:

a. The security_strength of the
DRBG instantiation.

b. A prediction_resistance_flag
that indicates whether or not a
prediction resistance
capability is required for the
DRBG instantiation.

The value of V and Key are the critical
values of the internal state upon which
the security of this DRBG mechanism
depends (i.e., V and Key are the “secret
values” of the internal state).

10.1.2.2 The HMAC_DRBG

Update Function
(Update)

The HMAC_DRBG_Update function
updates the internal state of
HMAC_DRBG using the
provided_data. Note that for this DRBG
mechanism, the HMAC_DRBG_Update
function also serves as a derivation
function for the instantiate and reseed
functions.

provided

A 4
V ||0x00 || provided data

M provided data » Null
...... Py

MM

A
| V || 0x01 || provided data

o Ke
E—.I‘ﬂ\fIAC

Figure 10: HMAC_DRBG_Update Function

Let HMAC be the keyed hash function specified in FIPS 198 using the hash function
selected for the DRBG mechanism from Table 2 in Section 10.1.

The following or an equivalent process shall be used as the HMAC_DRBG_Update

function.

HMAC_DRBG_Update (provided data, K, V):
1. provided_data: The data to be used.

2. K: The current value of Key.

3. V: The current value of V.
Output:

1. K: The new value for Key.

2. V:The new value for V.
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HMAC_DRBG Update Process:

K =HMAC (K, V || 0x00 || provided_data).

V = HMAC (K, V).

If (provided_data = Null), then return K and V.
K=HMAC (K, V || 0x01 || provided_data).

V =HMAC (K, V).

6. ReturnKandV.

o M W D oE

10.1.2.3Instantiation of HMAC _DRBG

Notes for the instantiate function specified in Section 9.1:

The instantiation of HMAC_DRBG requires a call to the Instantiate_function
specified in Section 9.1. Process step 9 of that function calls the instantiate algorithm
specified in this section. The values of highest_supported_security_strength and min
_length are provided in Table 2 of Section 10.1. The contents of the internal state are
provided in Section 10.1.2.1.

The instantiate algorithm:

Let HMAC_DRBG_Update be the function specified in Section 10.1.2.2. The output
block length (outlen) is provided in Table 2 of Section 10.1.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG mechanism (see step 9 of the instantiate process in Section 9.1):

HMAC_DRBG_ Instantiate_algorithm (entropy_input, nonce,
personalization_string, security_strength):

1. entropy_input: The string of bits obtained from the randomness source.
2. nonce: A string of bits as specified in Section 8.6.7.

3. personalization_string: The personalization string received from the consuming
application. Note that the length of the personalization_string may be zero.

4. security_strength: The security strength for the instantiation. This parameter is
optional for HMAC_DRBG, since it is not used.

Output:

1. initial_working_state: The inital values for V, Key and reseed_counter (see
Section 10.1.2.1).

HMAC_DRBG Instantiate Process:
1. seed_material = entropy_input || nonce || personalization_string.
2. Key =0x00 00...00. Comment: outlen bits.
3. V=0x0101...01. Comment: outlen bits.
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Comment: Update Key and V.
4. (Key, V) =HMAC_DRBG_Update (seed_material, Key, V).
5. reseed counter = 1.

6. Return V, Key and reseed_counter as the initial_working_state.

10.1.2.4 Reseeding an HMAC_DRBG Instantiation

Notes for the reseed function specified in Section 9.2:

The reseeding of an HMAC_DRBG instantiation requires a call to the
Reseed_function specified in Section 9.2. Process step 6 of that function calls the
reseed algorithm specified in this section. The values for min_length are provided in
Table 2 of Section 10.1.

The reseed algorithm:

Let HMAC DRBG_Update be the function specified in Section 10.1.2.2. The
following process or its equivalent shall be used as the reseed algorithm for this DRBG
mechanism (see step 6 of the reseed process in Section 9.2):

HMAC _DRBG_Reseed_algorithm (working_state, entropy_input, additional_input):

1. working_state: The current values for V, Key and reseed counter (see Section
10.1.2.1).

2. entropy_input: The string of bits obtained from the randomness source.

3. additional_input: The additional input string received from the consuming
application. Note that the length of the additional_input string may be zero.

Output:

1. new_working_state: The new values for V, Key and reseed_counter.
HMAC_DRBG Reseed Process:

1. seed_material = entropy_input || additional_input.

2. (Key, V) =HMAC_DRBG_Update (seed_material, Key, V).

3. reseed counter = 1.

4. ReturnV, Key and reseed_counter as the new_working_state.
10.1.2.5 Generating Pseudorandom Bits Using HMAC DRBG

Notes for the generate function specified in Section 9.3:

The generation of pseudorandom bits using an HMAC_DRBG instantiation requires a
call to the Generate_function specified in Section 9.3. Process step 8 of that function

calls the generate algorithm specified in this section. The values for

max_number_of bits_per_request and outlen are provided in Table 2 of Section 10.1.

The generate algorithm :
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Let HMAC be the keyed hash function specified in FIPS 198 using the hash function
selected for the DRBG mechanism. The value for reseed_interval is defined in Table 2
of Section 10.1.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG mechanism (see step 8 of the generate process in Section 9.3):

HMAC_DRBG_Generate_algorithm (working_state, requested_number_of_bits,

additional_input):

working_state: The current values for V, Key and reseed_counter (see Section
10.1.2.1).

requested_number_of_bits: The number of pseudorandom bits to be returned to
the generate function.

additional_input: The additional input string received from the consuming
application. Note that the length of the additional_input string may be zero.

Output:

1.

2.
3.

status: The status returned from the function. The status will indicate
SUCCESS, or indicate that a reseed is required before the requested
pseudorandom bits can be generated.

returned_bits: The pseudorandom bits to be returned to the generate function.
new_working_state: The new values for V, Key and reseed_counter.

HMAC_ DRBG Generate Process:

1.

If reseed_counter > reseed_interval, then return an indication that a reseed is
required.

2. If additional_input = Null, then (Key, V) =
HMAC_DRBG_Update (additional_input, Key, V).

3. temp = Null.

4. While (len (temp) < requested_number_of_bits) do:

© N o O

4.1 V=HMAC (Key V).

4.2 temp=temp | V.

returned_bits = leftmost (temp, requested_number_of_bits).
(Key, V) = HMAC_DRBG_Update (additional_input, Key, V).
reseed counter = reseed_counter + 1.

Return SUCCESS, returned_bits, and the new values of Key, V and
reseed_counter as the new_working_state).
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10.2 DRBG Mechanism Based on Block Ciphers

A block cipher DRBG is based on a block
cipher algorithm. The block cipher DRBG Key
mechanism specified in this
Recommendation has been designed to use | 1
any approved block cipher algorithm and i +
may be used by consuming applications v _'@-1—”
requiring various security strengths, t
providing that the appropriate block cipher ;
algorithm and key length are used, and ! Block
I
I

sufficient entropy is obtained for the seed.

The maximum security strength thatcanbe | === ==F—=——====
supported by the DRBG is the security
strength of the block cipher and key size
used; the security strengths for the block
ciphers and key sizes are provided in SP
800-57.

provided data——» &
10.2.1 CTR_DRBG l
CTR_DRBG uses an approved block

cipher algorithm in the counter mode as Key| v
specified in SP 800-38A, but allows the
counter field to be a subset of the input
block, as specified in SP 800-38D. Note
that for TDEA, the input and output block Figure 11: CTR_DRBG Update Function

lengths are 64 bits, and for AES, the lengths
are 128 bits.

The same block cipher algorithm and key length shall be used for all block cipher
operations of this DRBG. The block cipher algorithm and key length shall meet or exceed
the security requirements of the consuming application.

CTR_DRBG is specified using an internal function (CTR_DRBG_Update). Figure 11
depicts the CTR_DRBG_Update function. This function is called by the instantiate,
generate and reseed algorithms to adjust the internal state when new entropy or additional
input is provided, as well as to update the internal state after pseudorandom bits are
generated. Figure 12 depicts the CTR_DRBG in three stages. The operations in the top
portion of the figure are only performed if the additional input is not null.

Table 3 specifies the values that shall be used for the function envelopes and CTR_DRBG
mechanism.
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3 Key TDEA | AES- AES- AES-

128 192 256

Supported security strengths

See SP 800-57

highest_supported_security_strength

See SP 800-57

Input and output block length
(blocklen)

64 128 128 128

Counter field length (ctr_len)

4 <ctr_len < blocklen

Key length (keylen)

168 128 192 256

Required minimum entropy for
instantiate and reseed

security_strength

Seed length (seedlen = outlen + keylen)

232 256 320 384

If a derivation function is used:

Minimum entropy input length
(min _length)

security_strength

Maximum entropy input length
(max _length)

< 2% pits

Maximum personalization string
length
(max_personalization_string_length)

< 2% pits

Maximum additional_input length
(max_additional_input_length)

< 2% pits

If a derivation function is not used:

Minimum entropy input length
(min _length = blocklen + keylen)

seedlen

Maximum entropy input length
(max _length) (blocklen + keylen)

seedlen

Maximum personalization string
length
(max_personalization_string_length)

seedlen

Maximum additional_input length
(max_additional_input_length)

seedlen
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3 Key TDEA AES- AES- AES-
128 192 256
max_number_of bits_per_request <min(B, 2°*) < min(B, 29
(for B = (2°-"*"- 4) x blocklen)
Number of requests between reseeds < 2% < 2%
(reseed_interval)
Note that the claimed security Oppaaiionst ot
strength for CTR_DRBG
dependS on ||m|t|ng the total BLOCK CIPHER
number of generate requests and et

the bits provided per generate
request according to the table
above. Without these limits, it
becomes possible, in principle,
for an attacker to observe
enough outputs from
CTR_DRBG to distinguish its
outputs from ideal random bits.

The CTR_ DRBG may be

seedlen hits

seedlen hits

UFDATE

reseed
counter

implemented to use the block
cipher derivation function
specified in Section 10.3.2
during instantiation and
reseeding. However, the DRBG
mechanism is specified to allow
an implementation tradeoff with
respect to the use of this
derivation function. The use of
the derivation function is
optional if either an approved
RBG or an entropy source

State

Key

reseed
counter

- —

B,

-l B| B

Pseudorandom bits

provide full entropy output
when entropy input is requested
by the DRBG mechanism.

Otherwise, the derivation
function shall be used. Table 3
provides the lengths required for
the entropy_input,
personalization_string and
additional_input for each case.

reseed
counter

Figure 12: CTR-DRBG
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When using TDEA as the selected block cipher algorithm, the keys shall be handled as 64-
bit blocks containing 56 bits of key and 8 bits of parity as specified for the TDEA engine
specified in SP 800-67.

10.2.1.1 CTR_DRBG Internal State

The internal state for the CTR_DRBG consists of:
1. The working_state:

a. The value V of blocklen bits, which is updated each time another blocklen bits
of output are produced.

b. The keylen-bit Key, which is updated whenever a predetermined number of
output blocks are generated.

c. A counter (reseed_counter) that indicates the number of requests for
pseudorandom bits since instantiation or reseeding.

2. Administrative information:
a. The security_strength of the DRBG instantiation.

b. A prediction_resistance_flag that indicates whether or not a prediction
resistance capability is required for the DRBG instantiation.

The values of V and Key are the critical values of the internal state upon which the security
of this DRBG mechanism depends (i.e., V and Key are the “secret values” of the internal
state).

10.2.1.2 The Update Function (CTR_DRBG_Update)

The CTR_DRBG_Update function updates the internal state of the CTR_DRBG using
the provided_data. The values for blocklen, keylen and seedlen are provided in Table 3 of
Section 10.2.1. The value of ctr_len is known by an implementation. The block cipher
operation in step 2.2 of the CTR_DRBG_UPDATE process uses the selected block cipher
algorithm. The specification of Block_Encrypt is discussed in Section 10.3.3.

The following or an equivalent process shall be used as the CTR_DRBG_Update
function.

CTR_DRBG_Update (provided_data, Key, V):

1. provided_data: The data to be used. This must be exactly seedlen bits in length;
this length is guaranteed by the construction of the provided_data in the
instantiate, reseed and generate functions.

2. Key: The current value of Key.

3. V: The current value of V.
Output:

1. K: The new value for Key.
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2. V:The new value for V.
CTR_DRBG_Update Process:
1. temp = Null.
2. While (len (temp) < seedlen) do
2.1 If ctr_len <blocklen
2.1.1inc = (rightmost (V, ctr_len) + 1) mod 2°"-"*".
2.1.2 'V = leftmost (V, blocklen-ctr_len) || inc.
Else
2.1.2 V = (V+1) mod 2"ocklen
2.2 output_block = Block_Encrypt (Key, V).
2.3 temp =temp || ouput_block.
. temp = leftmost (temp, seedlen).
temp = temp @ provided_data.

3

4

5. Key = leftmost (temp, keylen).
6. V =rightmost (temp, blocklen).
7

Return the new values of Key and V.
10.2.1.3 Instantiation of CTR_DRBG

Notes for the instantiate function specified in Section 9.1:

The instantiation of CTR_DRBG requires a call to the Instantiate_function specified
in Section 9.1. Process step 9 of that function calls the instantiate algorithm specified in
this section. The values of highest_supported_security_strength and min_length are
provided in Table 3 of Section 10.2.1. The contents of the internal state are provided in
Section 10.2.1.1.

The instantiate algorithm:

For this DRBG mechanism, there are two cases for processing. In each case, let
CTR_DRBG_Update be the function specified in Section 10.2.1.2. The output block
length (blocklen), key length (keylen), seed length (seedlen) and security_strengths for
the block cipher algorithms are provided in Table 3 of Section 10.2.1.

10.2.1.3.1 Instantiation a Derivation Function is Not Used

When instantiation is performed using this method, full-entropy input is required, and a
nonce is not used. The following process or its equivalent shall be used as the instantiate
algorithm for this DRBG mechanism:

CTR_DRBG_Instantiate_algorithm (entropy_input, personalization_string,
security_strength):

54



NIST SP 800-90A, Rev. 1 November 2014

entropy_input: The string of bits obtained from the randomness source.

personalization_string: The personalization string received from the consuming
application. Note that the length of the personalization_string may be zero.

security_strength: The security strength for the instantiation. This parameter is
optional for CTR_DRBG.

Output:

1.

initial_working_state: The inital values for V, Key, and reseed_counter (see
Section 10.2.1.1).

CTR_DRBG Instantiate Process:

1.

10.2.1.

w o N o g b~ w

temp = len (personalization_string).

Comment: Ensure that the length of the
personalization_string is exactly seedlen bits.
The maximum length was checked in Section
9.1, processing step 3, using Table 3 to define
the maximum length.

If ('Eﬁmp < seedlen), then personalization_string = personalization_string ||
Osee en —temp.

seed_material = entropy_input @ personalization_string.

Key = QkeVlen, Comment: keylen bits of zeros.
\/ = QPlocklen Comment: blocklen bits of zeros.
(Key, V) = CTR_DRBG_Update (seed_material, Key, V).

reseed counter = 1.

Return V, Key, and reseed_counter as the initial_working_state.

Instantiation When a Derivation Function is Used

When instantiation is performed using this method, the entropy input may or may not have
full entropy; in either case, a nonce is required.

Let df be a derivation function specified in Section 10.3. When instantiation is performed
using this method, a nonce is required, whereas using the method in Section 10.2.1.3.1
does not require a nonce, since full entropy is provided when using that method.

The following process or its equivalent shall be used as the instantiate algorithm for this
DRBG mechanism:

CTR_DRBG_Instantiate_algorithm (entropy_input, nonce, personalization_string,
security_strength):

1.
2.

entropy_input: The string of bits obtained from the randomness source.

nonce: A string of bits as specified in Section 8.6.7.
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3. personalization_string: The personalization string received from the consuming
application. Note that the length of the personalization_string may be zero.

4. security_strength: The security strength for the instantiation. This parameter is
optional for CTR_DRBG, since it is not used.

Output:

1. initial_working_state: The inital values for V, Key, and reseed_counter (see
Section 10.2.1.1).

CTR_DRBG Instantiate Process:
1. seed_material = entropy_input || nonce || personalization_string.

Comment: Ensure that the length of the
seed_material is exactly seedlen bits.

seed_material = df (seed_material, seedlen).
Key = QkeVlen, Comment: keylen bits of zeros.
\/ = QPlocklen Comment: blocklen bits of zeros.

(Key, V) = CTR_DRBG_Update (seed_material, Key, V).
reseed counter = 1.

N o g bk N

Return V, Key, and reseed_counter as the initial_working_state.
10.2.1.4 Reseeding a CTR_DRBG Instantiation

Notes for the reseed function specified in Section 9.2:

The reseeding of a CTR_DRBG instantiation requires a call to the Reseed_function
specified in Section 9.2. Process step 6 of that function calls the reseed algorithm
specified in this section. The values for min _length are provided in Table 3 of Section
10.2.1.

The reseed algorithm:

For this DRBG mechanism, there are two cases for processing. In each case, let
CTR_DRBG_Update be the function specified in Section 10.2.1.2. The seed
length (seedlen) is provided in Table 3 of Section 10.2.1.

10.2.1.4.1 Reseeding When a Derivation Function is Not Used

When reseeding is performed using this method, full-entropy input is required.

The following process or its equivalent shall be used as the reseed algorithm for this
DRBG mechanism (see step 6 of the reseed process in Section 9.2):

CTR_DRBG_Reseed_algorithm (working_state, entropy_input, additional _input):

1. working_state: The current values for V, Key and reseed_counter (see Section
10.2.1.1).
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2. entropy_input: The string of bits obtained from the randomness source.

3. additional_input: The additional input string received from the consuming
application. Note that the length of the additional_input string may be zero.

Output:

1. new_working_state: The new values for V, Key, and reseed_counter.
CTR_DRBG Reseed Process:

1. temp = len (additional_input).

Comment: Ensure that the length of the
additional_input is exactly seedlen bits. The
maximum length was checked in Section 9.2,
processing step 2, using Table 3 to define the
maximum length.

If (temp < seedlen), then additional_input = additional_input || Q%€ - ™,

2
3. seed_material = entropy_input & additional_input.

4. (Key, V) =CTR_DRBG_Update (seed_material, Key, V).

5. reseed counter = 1.

6. ReturnV, Key and reseed_counter as the new_working_state.

10.2.1.4.2 Reseeding When a Derivation Function is Used

Let df be the derivation function specified in Section 10.3.

The following process or its equivalent shall be used as the reseed algorithm for this
DRBG mechanism (see reseed process step 6 of Section 9.2):

CTR_DRBG_Reseed_algorithm (working_state, entropy_input, additional_input)

1. working_state: The current values for V, Key and reseed_counter (see Section
10.2.1.1).

entropy_input: The string of bits obtained from the randomness source.

additional_input: The additional input string received from the consuming
application. Note that the length of the additional_input string may be zero.

Output:

1. new_working_state: The new values for V, Key, and reseed_counter.
CTR_DRBG Reseed Process:

1. seed material = entropy_input || additional_input.

Comment: Ensure that the length of the
seed_material is exactly seedlen bits.

2. seed_material = df (seed_material, seedlen).
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3. (Key, V) = CTR_DRBG_Update (seed_material, Key, V).
4. reseed counter = 1.

5. Return V, Key, and reseed_counter as the new_working_state.
10.2.1.5 Generating Pseudorandom Bits Using CTR_DRBG

Notes for the generate function specified in Section 9.3:

The generation of pseudorandom bits using a CTR_DRBG instantiation requires a call
to the Generate_function specified in Section 9.3. Process step 8 of that function calls
the generate algorithm specified in this section. The values for

max_number_of bits_per_request and max_additional_input_length, and blocklen are
provided in Table 3 of Section 10.2.1. If the derivation function is not used, then the
maximum allowed length of additional_input = seedlen.

For this DRBG mechanism, there are two cases for the processing. For each case, let
CTR_DRBG_Update be the function specified in Section 10.2.1.2, and let
Block_Encrypt be the function specified in Section 10.3.3. The seed length (seedlen)
and the value of reseed_interval are provided in Table 3 of Section 10.2.1. The value of
ctr_len is known by an implementation.

10.2.1.5.1 Generating Pseudorandom Bits When a Derivation Function is
Not Used

This method of generating bits is used when a derivation function is not used by an
implementation.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG mechanism (see step 8 of the generate process in Section 9.3.3):

CTR_DRBG_Generate_algorithm (working_state, requested_number_of_bits,
additional_input):

1. working_state: The current values for V, Key, and reseed_counter (see Section
10.2.1.1).

2. requested_number_of_bits: The number of pseudorandom bits to be returned to
the generate function.

3. additional_input: The additional input string received from the consuming
application. Note that the length of the additional_input string may be zero.

Output:

1. status: The status returned from the function. The status will indicate
SUCCESS, or indicate that a reseed is required before the requested
pseudorandom bits can be generated.

2. returned_bits: The pseudorandom bits returned to the generate function.
3. working_state: The new values for V, Key, and reseed_counter.
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CTR_DRBG Generate Process:

1. If reseed counter > reseed_interval, then return an indication that a reseed is
required.

2. If (additional_input = Null), then

Comment: Ensure that the length of the
additional_input is exactly seedlen bits. The
maximum length was checked in Section
9.3.3, processing step 4, using Table 3 to
define the maximum length. If the length of
the additional input is < seedlen, pad with
zero bits.

2.1 temp = len (additional_input).

2.2 If (temp < seedlen), then
additional_input = additional_input || 0%~ "™,

2.3 (Key, V) = CTR_DRBG_Update (additional_input, Key, V).
Else additional_input = 0°®",
3. temp = Null.
4. While (len (temp) < requested_number_of_bits) do:
4.1 If ctr_len < blocklen
4.1.1 inc = (rightmost (V, ctr_len) + 1) mod 2°"-"*",
4.1.2 V = leftmost (V, blocklen-ctr_len) || inc.
Else
4.1.2V = (V+1) mod 2°locklen
4.2 output_block = Block_Encrypt (Key, V).
4.3 temp =temp || output_block.
5. returned_bits = leftmost (temp, requested_number_of_bits).

Comment: Update for backtracking
resistance.

6. (Key, V) =CTR_DRBG_Update (additional_input, Key, V).
7. reseed_counter = reseed_counter + 1.

8. Return SUCCESS and returned_bits; also return Key, V, and reseed_counter as
the new_working_state.
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10.2.1.5.2 Generating Pseudorandom Bits When a Derivation Function is
Used

This method of generating bits is used when a derivation function is used by an
implementation.
Let df be a derivation function specified in Section 10.3.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG mechanism (see step 8 of the generate process in Section 9.3.3):

CTR_DRBG_Generate_algorithm (working_state, requested_number_of_bits,
additional_input):

1. working_state: The current values for V, Key, and reseed_counter (see Section
10.2.1.1).

2. requested_number_of_bits: The number of pseudorandom bits to be returned to
the generate function.

3. additional_input: The additional input string received from the consuming
application. Note that the length of the additional_input string may be zero.

Output:

1. status: The status returned from the function. The status will indicate
SUCCESS, or indicate that a reseed is required before the requested
pseudorandom bits can be generated.

2. returned_bits: The pseudorandom bits returned to the generate function.
3. working_state: The new values for V, Key, and reseed_counter.
CTR_DRBG Generate Process:

1. If reseed counter > reseed_interval, then return an indication that a reseed is
required.

2. If (additional_input = Null), then
2.1 additional_input = Block_Cipher_df (additional_input, seedlen).
2.2 (Key, V) = CTR_DRBG_Update (additional_input, Key, V).
Else additional _input = 0*®",
3. temp = Null.
4. While (len (temp) < requested_number_of_bits) do:
4.1 If ctr_len < blocklen
4.1.1 inc = (rightmost (V, ctr_len) + 1) mod 2°""*",
4.1.2'V = leftmost (V, blocklen-ctr_len) || inc.
Else

60



NIST SP 800-90A, Rev. 1 November 2014

4.1.2V = (V+1) mod 2°locklen
4.2 output_block = Block_Encrypt (Key, V).
4.3 temp =temp || output_block.
5. returned_bits = leftmost (temp, requested_number_of_bits).

Comment: Update for backtracking
resistance.
6. (Key, V) = CTR_DRBG_Update (additional_input, Key, V).
reseed counter = reseed_counter + 1.

Return SUCCESS and returned_bits; also return Key, V, and reseed_counter as
the new_working_state.

10.3 Auxiliary Functions

Derivation functions are internal functions that are used during DRBG instantiation and
reseeding to either derive internal state values or to distribute entropy throughout a
bitstring. Two methods are provided. One method is based on hash functions (see Section
10.3.1), and the other method is based on block cipher algorithms (see 10.3.2). The block
cipher derivation function specified in Section 10.3.2 uses a BCC function and a
Block_Encrypt call that are discussed in Section 10.3.3.

The presence of these derivation functions in this Recommendation does not implicitly
approve these functions for any other application.
10.3.1  Derivation Function Using a Hash Function (Hash_df)

This derivation function is used by the Hash_DRBG specified Section 10.1.1. The hash-

based derivation function hashes an input string and returns the requested number of bits.

Let Hash be the hash function used by the DRBG mechanism, and let outlen be its output
length.

The following or an equivalent process shall be used to derive the requested number of
bits.

Hash_df (input_string, no_of bits_to_return):
1. input_string: The string to be hashed.

2. no_of _bits_to_return: The number of bits to be returned by Hash_df. The
maximum length (max_number_of_bits) is implementation dependent, but shall be
less than or equal to (255 x outlen). no_of bits_to_return is represented as a 32-bit
integer.

Output:

1. status: The status returned from Hash_df. The status will indicate SUCCESS or
ERROR_FLAG.
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2. requested_bits : The result of performing the Hash_df.
Hash_df Process:
1. temp = the Null string.

no of bits to return
2. len= _of bits_to_ .

outlen
3. counter = an 8-bit binary value representing the integer "1".
4. Fori=1tolendo

Comment : In step 4.1, no_of_bits_to_return
is used as a 32-bit string.

4.1 temp =temp || Hash (counter || no_of _bits_to_return || input_string).
4.2 counter = counter + 1.

5. requested_bits = leftmost (temp, no_of bits_to_return).

6. Return SUCCESS and requested_bits.

10.3.2  Derivation Function Using a Block Cipher Algorithm
(Block_Cipher_df)

This derivation function is used by the CTR_DRBG that is specified in Section 10.2. BCC
and Block_Encrypt are discussed in Section 10.3.3. Let outlen be its output block length,
which is a multiple of 8 bits for the approved block cipher algorithms, and let keylen be
the key length.

The following or an equivalent process shall be used to derive the requested number of
bits.

Block_Cipher_df (input_string, no_of_bits_to_return):
1. input_string: The string to be operated on. This string shall be a multiple of 8 bits.

2. no_of bits_to_return: The number of bits to be returned by Block_Cipher_df. The
maximum length (max_number_of_bits) is 512 bits for the currently approved
block cipher algorithms.

Output:

1. status: The status returned from Block_Cipher_df. The status will indicate
SUCCESS or ERROR_FLAG.

2. requested_bits : The result of performing the Block_Cipher_df.
Block_Cipher_df Process:

1. If (number_of bits to_return > max_number_of_bits), then return an
ERROR_FLAG and a Null string.
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L = len (input_string)/8. Comment: L is the bitstring represention of
the integer resulting from len (input_string)/8.
L shall be represented as a 32-bit integer.

N = number_of bits_to_return/8.  Comment : N is the bitstring represention of
the integer resulting from
number_of bits_to_return/8. N shall be
represented as a 32-bit integer.

Comment: Prepend the string length and the
requested length of the output to the
input_string.

S=L| N input_string || 0x80.

Comment : Pad S with zeros, if necessary.
While (len (S) mod outlen) = 0, S = S || 0x00.

Comment : Compute the starting value.
temp = the Null string.

i=0. Comment : i shall be represented as a 32-bit
integer, i.e., len (i) = 32.

K = leftmost (0x00010203...1D1E1F, keylen).

9. While len (temp) < keylen + outlen, do

10.
11.
12.
13.

14.
15.

9.1 Iv=i|oeuen-len) Comment: The 32-bit integer represenation of
i is padded with zeros to outlen bits.

9.2 temp=temp ||BCC (K, (IV|S)).
93 i=i+1l.

Comment: Compute the requested number of
bits.

K = leftmost (temp, keylen).

X = Next outlen bits of temp.

temp = the Null string.

While len (temp) < number_of bits_to_return, do

13.1 X =Block_Encrypt (K, X).

13.2 temp =temp || X.

requested_bits = leftmost (temp, number_of bits_to_return).
Return SUCCESS and requested_bits.
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10.3.3 BCC and Block_Encrypt

Block_Encrypt is used for convenience in the specification of the BCC function. This
function is not specifically defined in this Recommendation, but has the following
meaning:

Block_Encrypt: A basic encryption operation that uses the selected block cipher
algorithm. The function call is:

output_block = Block_Encrypt (Key, input_block)

For TDEA, the basic encryption operation is called the forward cipher operation (see
SP 800-67); for AES, the basic encryption operation is called the cipher operation (see
FIPS 197]. The basic encryption operation is equivalent to an encryption operation on a
single block of data using the ECB mode.

For the BCC function, let outlen be the length of the output block of the block cipher
algorithm to be used.

The following or an equivalent process shall be used to derive the requested number of
bits.

BCC (Key, data):
1. Key: The key to be used for the block cipher operation.

2. data: The data to be operated upon. Note that the length of data must be a multiple
of outlen. This is guaranteed by Block_Cipher_df process steps 4 and 8.1 in
Section 10.3.2.

Output:
1. output_block: The result to be returned from the BCC operation.

BCC Process:
1. chaining_value = 0°!". Comment: Set the first chaining value to outlen zeros.
2. n=len (data)/outlen.

3. Starting with the leftmost bits of data, split the data into n blocks of outlen bits
each, forming block; to blockp.

4. Fori=1ltondo

4.1 input_block = chaining_value @ block; .

4.2 chaining_value = Block_Encrypt (Key, input_block).
5. output_block = chaining_value.
6. Return output_block.
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11 Assurance

A user of a DRBG employed for cryptographic purposes requires assurance that the
generator actually produces (pseudo) random and unpredictable bits. The user needs
assurance that the design of the generator, its implementation and its use to support
cryptographic services are adequate to protect the user's information. In addition, the user
requires assurance that the generator continues to operate correctly.

The design of each DRBG mechanism in this Recommendation has received an evaluation
of its security properties prior to its selection for inclusion in this Recommendation.

An implementer selects a DRBG mechanism (e.g., HMAC_DRBG), an appropriate
cryptographic primitive (e.g., SHA-256 or SHA-512), the DRBG functions to be used (i.e.,
instantiate, generate and/or reseed), and will determine whether or not the DRBG will be
distributed (see Section 8.5). Each choice of components effectively defines a different
DRBG type. For example, an implementation of HMAC_DRBG using SHA-256 is
considered to be a different DRBG than HMAC_DRBG using SHA-512.

An implementation shall be validated for conformance to this Recommendation by a
NVLAP-accredited laboratory (see Section 11.2). Such validations provide a higher level
of assurance that the DRBG mechanism is correctly implemented.

Health tests on the DRBG mechanism shall be implemented within a DRBG mechanism
boundary or sub-boundary in order to determine that the process continues to operate as
designed and implemented. See Section 11.3 for further information.

A cryptographic module containing a DRBG mechanism shall be validated (see FIPS 140).
The consuming application or cryptographic service that uses a DRBG mechanism should
also be validated and periodically tested for continued correct operation. However, this
level of testing is outside the scope of this Recommendation.

Note that any entropy input used for testing (either for validation testing or health testing)
may be publicly known. Therefore, entropy input used for testing shall not knowingly be
used for normal operational use.

11.1 Minimal Documentation Requirements

A set of documentation shall be developed that will provide assurance to users and
validators that the DRBG mechanisms in this Recommendation have been implemented
properly. Much of this documentation may be placed in a user manual. This documentation
shall consist of the following as a minimum:

e Document the method for obtaining entropy input.

e Document how the implementation has been designed to permit implementation
validation and health testing.

e Document the type of DRBG mechanism (e.g., CTR_DRBG), and the
cryptographic primitives used (e.g., AES-128, SHA-256).
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e Document the security strengths supported by the implementation.

e Document features supported by the implemention (e.g., prediction resistance,
personalization string, additional input, etc.).

e |f DRBG mechanism functions are distributed, specify the mechanisms that are
used to protect the confidentiality and integrity of the internal state or parts of the
internal state that are transferred between the distributed DRBG mechanism sub-
boundaries (i.e., provide documentation about the secure channel).

e Inthe case of the CTR_DRBG, indicate whether a derivation function is provided.
If a derivation function is not used, document that the implementation can only be
used when full entropy input is available.

e Document any support functions other than health testing.

e |f periodic testing is performed for the generate function, document the intervals
and provide a justification for the selected intervals (see Section 11.3.3).

e Document whether the DRBG functions can be tested on demand.

e Document how the integrity of the health tests will be determined subsequent to
implementation validation testing.

11.2 Implementation Validation Testing

A DRBG mechanism shall be tested for conformance to this Recommendation. A DRBG
mechanism shall be designed to be tested to ensure that the product is correctly
implemented. A testing interface shall be available for this purpose in order to allow the
insertion of input and the extraction of output for testing.

Implementations to be validated shall include the following:
e The documentation specified in Section 11.1.

e Any documentation or results required in derived test requirements.

11.3 Health Testing

A DRBG implementation shall perform self-tests to obtain assurance that the DRBG
continues to operate as designed and implemented (health testing). The testing function(s)
within a DRBG mechanism boundary (or sub-boundary) shall test each DRBG mechanism
function within that boundary (or sub-boundary), with the possible exception of the test
function itself. A DRBG implementation may optionally perform other self-tests for
DRBG functionality in addition to the tests specified in this Recommendation.

All data output from the DRBG mechanism boundary (or sub-boundary) shall be inhibited
while these tests are performed. The results from known-answer-tests (see Section 11.3.1)
shall not be output as random bits during normal operation.
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11.3.1 Known Answer Testing

Known-answer testing shall be conducted as specified below. A known-answer test
involves operating the DRBG mechanism with data for which the correct output is already
known, and determining if the calculated output equals the expected output (the known
answer). The test fails if the calculated output does not equal the known answer. In this
case, the DRBG mechanism shall enter an error state and output an error indicator (see
Section 11.3.6).

Generalized known-answer testing is specified in Sections 11.3.2 through 11.3.5. With the
possible exception of the test function itself, testing shall be performed on all implemented
DRBG mechanism functions within a DRBG boundary (if all functions are in the same
device) or sub-boundary (if functions are distributed); see Section 8.5. Documentation
shall be provided that addresses the continued integrity of the health tests (see Section
11.1).

Known-answer tests shall be conducted on each DRBG function within a boundary or sub-
boundary prior to the first-use of that DRBG (e.qg., during the power-on self-testing
sequence).

11.3.2  Testing the Instantiate Function

Known-answer tests on the instantiate function shall use a security strength that will be
available during normal operations. If prediction resistance has been implemented, the
prediction_resistance_flag shall also be used. A representative fixed value and length of
the entropy_input, nonce and personalization_string (if supported) shall be used; the value
of the entropy_input used during testing shall not be intentionally reused during normal
operations (either by the instantiate or the reseed functions). Error handling shall also be
tested, including whether or not the instantiate function handles an error from the
randomness source correctly.

If the values used during the test produce the expected results, and errors are handled
correctly, then the instantiate function may be used during normal operation.

An implementation should provide a capability to test the instantiate function on demand.
11.3.3  Testing the Generate Function

During generate-function testing, a representative fixed value and length for the
requested_number_of bits and additional_input (if supported) shall be used. If prediction
resistance is supported, then the use of the prediction_resistance_request parameter shall
be tested. The error handling for each input parameter shall be tested, and testing shall
include setting the reseed_counter to meet or exceed the reseed_interval in order to check
that the implementation is reseeded or that the DRBG is uninstantiated, as appropriate (see
Section 9.3.1).

If the values used during the test produce the expected results, and errors are handled
correctly, then the generate function may be used during normal operation.

Bits generated during health testing shall not be output as pseudorandom bits.
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An implementation should provide a capability to test the generate function on demand.

In addition to testing the generate function before first use (see Section 11.3.1), known-
answer tests should be performed at reasonable intervals, as defined by the implementer.

11.3.4  Testing the Reseed Function

Known-answer testing of the reseed function shall use the security_strength in the internal
state of the (testing) instantiation to be reseeded. A representative value of the
entropy_input and additional_input (if supported) shall be used (see Sections 8.3 and 10).
If prediction resistance for the reseed function is supported, then the use of the
prediction_resistance_request parameter shall be tested. Error handling shall also be
tested, including an error in obtaining the entropy_input (e.g., the randomness source is
unavailable).

If the values used during the test produce the expected results, and errors are handled
correctly, then the reseed function may be used during normal operation.

An implementation should provide a capability to test the reseed function on demand.
11.3.5 Testing the Uninstantiate Function

The uninstantiate function shall be tested whenever other functions are tested that reside in
the same (sub)boundary as the uninstantiate function. Testing shall demonstrate that error
handling is performed correctly, and the internal state has been zeroized.

11.3.6  Error Handling

The expected errors are indicated for each DRBG mechanism function (see Sections 9.1 -
9.4) and for the derivation functions in Section 10.3. The error handling routines should
indicate the type of error.

11.3.6.1  Errors Encountered During Normal Operation

Many errors that occur during normal operation may be caused by a consuming
application’s improper DRBG request or possibly the current unavailability of entropy;
these errors are indicated by “ERROR_FLAG” in the pseudocode. In these cases, the
consuming application user is responsible for correcting the request within the limits of the
user’s organizational security policy. For example, if a failure indicating an invalid,
requested security strength is returned, a security strength higher than the DRBG or the
DRBG instantiation can support has been requested. The user may reduce the requested
security strength if the organization’s security policy allows the information to be
protected using a lower security strength, or the user shall use an appropriately instantiated
DRBG.

Catastrophic errors (i.e., those errors indicated by the
CATASTROPHIC_ERROR_FLAG in the pseudocode) detected during normal
operation shall be treated in the same manner as an error detected during health testing
(see Section 11.3.6.2).

68



NIST SP 800-90A, Rev. 1 November 2014

11.3.6.2 Errors Encountered During Health Testing

Errors detected during health testing shall be perceived as catastrophic DRBG failures.

When a DRBG fails a health test or a catastrophic error is detected during normal
operation, the DRBG shall enter an error state and output an error indicator. The DRBG
shall not perform any instantiate, generate or reseed operations while in the error state, and
pseudorandom bits shall not be output when an error state exists. When in an error state,
user intervention (e.g., power cycling of the DRBG) shall be required to exit the error
state, and the DRBG shall be re-instantiated before the DRBG can be used to produce
pseudorandom bits. Examples of such errors include:

e Atest deliberately inserts an error, and the error is not detected, or

e Arresult is returned from the instantiate, reseed or generate function that was not
expected.
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Appendix A: (Normative) Conversion and Auxilliary Routines

A.1 Bitstring to an Integer

Bitstring_to_integer (by, by,..., by):

1. Dby, by,..., b The bitstring to be converted.
Output:

1. x The requested integer representation of the bitstring.
Process:

1. Let (by, by,..., by) be the bits of b from leftmost to rightmost.

2. x =i2‘"‘%}..

=1
3. Return x.

In this Recommendation, the binary length of an integer x is defined as the smallest integer
n satisfying x < 2",

A.2 Integer to a Bitstring

Integer_to_bitstring (x):

1. x The non-negative integer to be converted.
Output:

1. by, by, ..., b, The bitstring representation of the integer x.
Process:

1. Let (by, by, ..., by) represent the bitstring, where b; = 0 or 1, and b; is the most
significant bit, while b, is the least significant bit.

2. For any integer n that satisfies x < 2", the bits b; shall satisfy:

x= iz‘"*'?b,..
=1

3. Return by, by, ..., by.

In this Recommendation, the binary length of the integer x is defined as the smallest
integer n that satisfies x < 2".
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A.3 Integer to a Byte String

Integer_to_byte string (x):
1. A non-negative integer x, and the intended length n of the byte string satisfying

25" > x.
Output:
1. A byte string O of length n bytes.
Process:

1. Let Oy, Oy,..., O, be the bytes of O from leftmost to rightmost.
2. The bytes of O shall satisfy:

X=X 28(”'”Oi
fori=1ton.
3. Return O.

A.4 Byte String to an Integer

Byte_string_to_integer (O):
1. A byte string O of length n bytes.
Output:
1. A non-negative integer x.
Process:
1. Let Oy, Oy, ..., Oy be the bytes of O from leftmost to rightmost.
2. X is defined as follows:
x =3 28000,
fori=1ton.
3. Return x.

A.5 Converting Random Bits into a Random Number

In some cryptographic applications, sequences of random numbers are required (ap, ai,
ay,...) Where:

i) Each integer a; satisfies 0 < a; < r-1, for some positive integer r (the range of the
random numbers);

i) The equation a; = s holds, with probability almost exactly 1/r, for any i > 0 and for
anys (0<s<r-1);
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iii) Each value a; is statistically independent of any set of values a; (j # i).

Four techniques are specified for generating sequences of random numbers from sequences
of random bits.

If the range of the number required is a < a; < b, rather than 0 < a; < r-1, then a random
number in the desired range can be obtained by computing a; + a, where a; is a random
number in the range 0 < a; < b-a (that is, when r = b-a+1).

A5.1 The Simple Discard Method
Let m be the number of bits needed to represent the value (r-1). The following method
may be used to generate the random number a:

1. Use the random bit generator to generate a sequence of m random bits, (bo, by, ...,
bm_l).

m—1
2. Lete=) 2%,

=0
3. Ifc<rthenputa=c,elsediscard c and go to Step 1.

This method produces a random number a with no skew (no bias). A possible
disadvantage of this method, in general, is that the time needed to generate such a random
a is not a fixed length of time because of the conditional loop.

The ratio r/2™ is a measure of the efficiency of the technique, and this ratio will always
satisfy 0.5 < r/2" < 1. If r/2" is close to 1, then the above method is simple and efficient.
However, if r/2™ is close to 0.5, then the simple discard method is less efficient, and the
more complex method below is recommended.

A.5.2 The Complex Discard Method

Choose a small positive integer t (the number of same-size random number outputs
desired), and then let m be the number of bits in (r' —1). This method may be used to
generate a sequence of t random numbers (a, ai, ... , aw1):

1. Use the random bit generator to generate a sequence of m random bits, (bo, by, ...,
bm_l).

-1
2. Lete= 2%,
=0

3. Ifc<r', then

let (ap, as, ..., ar.1) be the unique sequence of values satisfying 0 < a; < r -1 such
1
that ¢ = Zriai.

=0

else discard c and go to Step 1.
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This method produces random numbers (ay, as, ... , ar1) with no skew. A possible
disadvantage of this method, in general, is that the time needed to generate these numbers
is not a fixed length of time because of the conditional loop. The complex discard method
may have better overall performance than the simple discard method if many random
numbers are needed.

The ratio r'/2™ is a measure of the efficiency of the technique, and this ratio will always
satisfy 0.5 < r'/2™ < 1. Hence, given r, it is recommended to choose t so that t is the
smallest value such that r'/2™ is close to 1. For example, if r = 3, then choosing t = 3
means that m = 5 (as r' is 27) and r'/m = 27/32 ~ 0.84, and choosing t = 5 means that m = 8
(as r'is 243) and r'/m = 243/256 ~ 0.95. The complex discard method coincides with the
simple discard method whent = 1.

A5.3 The Simple Modular Method

Let m be the number of bits needed to represent the value (r-1), and let s be a security
parameter. The following method may be used to generate one random number a:

1. Use the random bit generator to generate a sequence of m+s random bits, (bo, by,
vy bm+s-1)-

m+s-1
2. Letc= ) 2'b.

i=0
3. Leta=cmodr.

The simple modular method can be coded to take constant time. This method produces a
random value with a negligible skew, that is, the probability that a;=w for any particular
value of w (0 <w < r-1) is not exactly 1/r. However, for a large enough value of s, the
difference between the probability that aj=w for any particular value of w and 1/r is
negligible. The value of s shall be greater than or equal to 64.

A5.4  The Complex Modular Method

Choose a small positive integer t (the number of same-size random number outputs
desired) and a security parameter s; let m be the number of bits in (r' —1). The following
method may be used to generate a sequence of t random numbers (ao, ay, ..., at1):

1. Use the random bit generator to generate a sequence of m+s random bits, (bo, by,
vy Dmas1).
mts-1
2. Let > 2%, modr"

=0
3. Let (ap, ay, ..., ar1) be the unique sequence of values satisfying 0 < a; < r-1 such
-1
that c =) r'a; .

i=0
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The complex modular method may have better overall performance than the simple
modular method if many random numbers are needed. This method produces a random
value with a negligible skew; that is, the probability that a;=w for any particular value of w
(0 <w <r-1) is not exactly 1/r. However, for a large enough value of s, the difference
between the probability that a;=w for any particular value of w and 1/r is negligible. The
value of s shall be greater than or equal to 64. The complex modular method coincides
with the simple modular method when t=1.
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Appendix B: (Informative) Example Pseudocode for Each DRBG
Mechanism

The internal states in these examples are considered to be an array of states, identified by
state_handle. A particular state is addressed as internal_state (state_handle), where the
value of state_handle begins at 0 and ends at n-1, and n is the number of internal states
provided by an implementation. A particular element in the internal state is addressed by
internal_state (state_handle).element. In an empty internal state, all bitstrings are set to
Null, and all integers are set to 0.

For each example in this appendix, arbitary values have been selected that are consistent
with the allowed values for each DRBG mechanism, as specified in the appropriate table in
Section 10.

The pseudocode in this appendix does not include the necessary conversions (e.g., integer
to bitstring) for an implementation. When conversions are required, they shall be
accomplished as specified in Appendix A.

The following routine is defined for these pseudocode examples:

Find_state_space (): A function that finds an unused internal state. The function
returns a status (either “Success” or a message indicating that an unused internal state
is not available) and, if status = “Success”, a state_handle that points to an available
internal_state in the array of internal states. If status = “Success”, an invalid
state_handle is returned.

When the uninstantantiate function is invoked in the following examples, the function
specified in Section 9.4 is called.

B.1 Hash_DRBG Example

This example of Hash_DRBG uses the SHA-1 hash function, and prediction resistance is
supported. Both a personalization string and additional input are supported. A 32-bit
incrementing counter is used as the nonce for instantiation (instantiation_nonce); the nonce
is initialized when the DRBG is instantiated (e.g., by a call to the clock or by setting it to a
fixed value) and is incremented for each instantiation.

A total of ten internal states are provided (i.e., ten instantiations may be handled
simultaneously).

For this implementation, the functions and algorithms are “inline”, i.e., the algorithms are
not called as separate routines from the function envelopes. Also, the Get_entropy_input
function uses only three input parameters, since the first two parameters (as specified in
Section 9) have the same value.

The internal state contains values for V, C, reseed_counter, security_strength and
prediction_resistance_flag, where V and C are bitstrings, and reseed_counter,
security_strength and the prediction_resistance_flag are integers. A requested prediction
resistance capability is indicated when prediction_resistance_flag = 1.
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In accordance with Table 2 in Section 10.1, the 112- and 128-bit security strengths may be
instantiated. Using SHA-1, the following definitions are applicable for the instantiate,
generate and reseed functions and algorithms:

1. highest_supported_security_strength = 128.

2. Output block length (outlen) = 160 bits.

3. Required minimum entropy for instantiation and reseed = security_strength.
4. Seed length (seedlen) = 440 bits.
5

Maximum number of bits per request (max_number_of bits_per_request) = 5000
bits.

Reseed interval (reseed_interval) = 100,000 requests.

7. Maximum length of the personalization string (max_personalization_string_length)
=512 bits.

8. Maximum length of additional_input (max_additional_input_string_length) = 512
bits.

9. Maximum length of entropy input (max _length) = 1000 bits.
B.1.1 Instantiation of Hash_ DRBG

This implementation will return a text message and an invalid state handle (-1) when an
error is encountered. Note that the value of instantiation_nonce is an internal value that is
always available to the instantiate function.

Note that this implementation does not check the prediction_resistance_flag, since the
implementation has been designed to support prediction resistance. However, if a
consuming application actually wants prediction resistance, the implementation expects
that prediction_resistance_flag = 1 during instantiation; this will be used in the generate
function in Appendix B.1.3.

Hash_DRBG _ Instantiate_function:

Input: integer (requested_instantiation_security_strength, prediction_resistance_flag),
bitstring personalization_string.

Output: string status, integer state_handle.
Process:
Comment: Check the input parameters.

1. If (requested_instantiation_security_strength > 128), then Return (“Invalid
requested_instantiation_security_strength”, -1).

2. If (len (personalization_string) > 512), then Return (“Personalization_string
too long”, -1).

Comment: Set the security_strength to one of
the valid security strengths.
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10.
11.

12.
13.
14.

15.

If (requested_instantiation_security_strength < 112), then security_strength =
112

Else security_strength = 128.
Comment: Get the entropy_input.

(status, entropy_input) = Get_entropy_input (security_strength, 1000,
prediction_resistance_request).

If (status = “Success”), then Return (status, -1).

Comment: Increment the nonce; actual coding
must ensure that it wraps when the storage
limit is reached.

instantiation_nonce = instantiation_nonce + 1.

Comment: The instantiate algorithm is
provided in steps 7-11.

seed_material = entropy_input || instantiation_nonce || personalization_string.
seed = Hash_df (seed_material, 440).

V = seed.
C = Hash_df ((0x00 || V), 440).
reseed counter = 1.

Comment: Find an unused internal
state.

(status, state_handle) = Find_state_space ().

If (status = “Success”), then Return (status, -1).

Save the internal state.

14.1 internal_state (state_handle).V = V.

14.2 internal_state (state_handle).C = C.

14.3 internal_state (state_handle).reseed_counter = reseed_counter.
14.4 internal_state (state_handle). security_strength = security_strength.

14.5 internal_state (state_handle).prediction_resistance flag =
prediction_resistance_flag.

Return (“Success”, state_handle).
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B.1.2

Reseeding a Hash_DRBG Instantiation

The implementation is designed to return a text message as the status when an error is
encountered.

Hash_DRBG_Reseed_function:

Input:

integer state_handle, integer prediction_resistance_request, bitstring

additional_input.

Output: string status.

Process:
Comment: Check the validity of the
state_handle.
1. If ((state_handle < 0) or (state_handle > 9) or (internal_state (state_handle) =

© o N o

11.

{Null, Null, 0, 0, 0})), then Return (*State not available for the state_handle”).

Comment: Get the internal state values
needed to determine the new internal state.

Get the appropriate internal_state values.
V = internal_state(state_handle).V.
security_strength = internal_state(state_handle).security_strength.
Check the length of the additional_input.
If (len (additional_input) > 512), then Return (“additional_input too long”).
Comment: Get the entropy_input.

(status, entropy_input) = Get_entropy_input (security_strength, 1000,
prediction_resistance_request).

If (status = “Success”), then Return (status).

Comment: The reseed algorithm is provided
in steps 6-10.

seed_material = 0x01 || V || entropy_input || additional _input.
seed = Hash_df (seed_material, 440).

V = seed.

C = Hash_df ((0x00 || V), 440).

. reseed_counter = 1.

Comment: Update the working_state portion
of the internal state.

Update the appropriate state values.
11.1 internal_state (state_handle).V = V.
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11.2 internal_ state (state_handle).C = C.
11.3 internal_ state (state_handle).reseed_counter = reseed_counter.
12. Return (“Success”).
B.1.3 Generating Pseudorandom Bits Using Hash_DRBG
The implementation returns a Null string as the pseudorandom bits if an error has been
detected. Prediction resistance is requested when prediction_resistance_request = 1.

In this implementation, prediction resistance is requested by supplying
prediction_resistance_request = 1 when the Hash_DRBG function is invoked.

Hash_DRBG_Generate_function:

Input: integer (state_handle, requested_no_of bits, requested_security_strength,
prediction_resistance_request), bitstring additional_input.

Output: string status, bitstring pseudorandom_bits.
Process:

Comment: Check the validity of the
state_handle.

1. If ((state_handle < 0) or (state_handle > 9) or (state (state_handle) = {Null,
Null, 0, 0, 0})), then Return (*State not available for the state_handle”, Null).

2. Get the internal state values.
2.1V =internal_state (state_handle).V.
2.2 C = internal_state (state_handle).C.
2.3 reseed_counter = internal_state (state_handle).reseed_counter.
2.4 security_strength = internal_state (state_handle).security_strength.

2.5 prediction_resistance_flag = internal_state
(state_handle).prediction_resistance_flag.

Comment: Check the validity of the other
input parameters.

3. If (requested_no_of bits > 5000) then Return (“Too many bits requested”,
Null).

4. If (requested_security_strength > security_strength), then Return (“Invalid
requested_security_strength”, Null).

5. If (len (additional_input) > 512), then Return (“additional_input too long”,
Null).

6. If ((reseed_counter > 100,000) OR (prediction_resistance_request = 1)), then
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9.

10.
11.

12.
13.
14.
15.

16.

6.1 status=Hash DRBG_Reseed function (state_handle,
prediction_resistance_request, additional_input).

6.2 If (status = “Success”), then Return (status, Null).
6.3 Get the new internal state values that have changed.

7.3.1V = internal_state (state_handle).V.

7.3.2 C = internal_state (state_handle).C.

7.3.3 reseed_counter = internal_state (state_handle).reseed_counter.
6.4 additional_input = Null.

Comment: Steps 7-15 provide the rest of the
generate algorithm. Note that in this
implementation, the Hashgen routine is also
inline as steps 8-12.

If (additional_input = Null), then do

7.1 w = Hash (0x02 || V || additional_input).
7.2V = (V +w) mod 2*%.

e requested no of bitd .

outlen
data=V.
W = the Null string.
Fori=1tom
11.1 w; = Hash (data).
11.2 W=W|| w;.
11.3 data = (data + 1) mod 2*%°.
pseudorandom_bits = leftmost (W, requested_no_of _bits).
H = Hash (0x03 || V).
V = (V + H + C + reseed_counter) mod 2*°,
reseed counter = reseed_counter + 1.
Comments: Update the working_state.
Update the changed values in the state.
16.1 internal_state (state_handle).V = V.
16.2 internal_state (state_handle).reseed_counter = reseed_counter.

17. Return (“Success”, pseudorandom_hits).
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B.2 HMAC_DRBG Example

This example of HMAC_DRBG uses the SHA-256 hash function. Reseeding and
prediction resistance are not supported. The nonce for instantiation consists of a random
value with security_strength/2 bits of entropy; the nonce is obtained by increasing the call
for entropy bits via the Get_entropy_input call by security_strength/2 bits (i.e., by adding
security_strength/2 bits to the security_strength value). The HMAC_DRBG_Update
function is specified in Section 10.1.2.2.

A personalization string is supported, but additional input is not. A total of three internal
states are provided. For this implementation, the functions and algorithms are written as
separate routines. Also, the Get_entropy_input function uses only two input parameters,
since the first two parameters (as specified in Section 9) have the same value, and
prediction resistance is not available.

The internal state contains the values for V, Key, reseed_counter, and security_strength,
where V and C are bitstrings, and reseed_counter and security_strength are integers.

In accordance with Table 2 in Section 10.1, security strengths of 112, 128, 192 and 256
bits may be instantiated. Using SHA-256, the following definitions are applicable for the
instantiate and generate functions and algorithms:

1. highest_supported_security_strength = 256.
2. Output block (outlen) = 256 bits.

3. Required minimum entropy for the entropy input at instantiation = 3/2
security_strength (this includes the entropy required for the nonce).

4. Seed length (seedlen) = 440 bits.

Maximum number of bits per request (max_number_of bits_per_request) = 7500
bits.

6. Reseed_interval (reseed_ interval) = 10,000 requests.

7. Maximum length of the personalization string (max_personalization_string_length)
= 160 bits.

8. Maximum length of the entropy input (max _length) = 1000 bits.

B.2.1 Instantiation of HMAC _DRBG

This implementation will return a text message and an invalid state handle (—1) when an error
is encountered.

HMAC_DRBG_ Instantiate_function:

Input: integer (requested_instantiation_security_strength), bitstring
personalization_string.

Output: string status, integer state_handle.
Process:
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10.

11.

Check the validity of the input parameters.

If (requested_instantiation_security_strength > 256), then Return (“Invalid
requested_instantiation_security_strength”, —1).

If (len (personalization_string) > 160), then Return (“Personalization_string
too long”, -1)

Comment: Set the security_strength to
one of the valid security strengths.

If (requested_security_strength < 112), then security_strength = 112
Else (requested_ security_strength < 128), then security_strength = 128
Else (requested_ security_strength < 192), then security_strength = 192
Else security_strength = 256.

Comment: Get the entropy_input and
the nonce.

min_entropy = 1.5 x security_strength.
(status, entropy_input) = Get_entropy_input (min_entropy, 1000).
If (status = “Success”), then Return (status, —1).

Comment: Invoke the instantiate algorithm.
Note that the entropy_input contains the
nonce.

(V, Key, reseed_counter) = HMAC_DRBG_Instantiate_algorithm
(entropy_input, personalization_string).

Comment: Find an unused internal state.
(status, state_handle) = Find_state_space ().
If (status = “Success”), then Return (status, —1).
Save the initial state.
10.1 internal_state (state_handle).V = V.
10.2 internal_state (state_handle). Key = Key.
10.3 internal_state (state_handle). reseed_counter = reseed_counter.
10.4 internal_state (state_handle).security_strength = security_strength.
Return (“Success” and state_handle).

HMAC_DRBG_ Instantiate_algorithm (...):

Input:

bitstring (entropy_input, personalization_string).

Output: bitstring (V, Key), integer reseed_counter.
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Process:

1.

o gk~ WD

B.2.2

seed_material = entropy_input || personalization_string.

Set Key to outlen bits of zeros.

Set V to outlen/8 bytes of 0x01.

(Key, V) = HMAC_DRBG_Update (seed_material, Key, V).
reseed counter = 1.

Return (V, Key, reseed_counter).

Generating Pseudorandom Bits Using HMAC_DRBG

The implementation returns a Null string as the pseudorandom bits if an error has been

detected.

HMAC_DRBG_Generate_function:
Input: integer (state_handle, requested_no_of bits, requested security strength).

Output: string (status), bitstring pseudorandom_bits.

Process:

Comment: Check for a valid state handle.

If ((state_handle < 0) or (state_handle > 2) or (internal_state (state_handle) =
{Null, Null, 0, 0}), then Return (*“State not available for the indicated
state_handle”, Null).

Get the internal state.

2.1 'V =linternal_state (state_handle).V.

2.2 Key = internal_state (state_handle).Key.

2.3 security_strength = internal_state (state_handle).security_strength.
2.4 reseed_counter = internal_state (state_handle).reseed_counter.

Comment: Check the validity of the rest of
the input parameters.

If (requested_no_of bits > 7500), then Return (*Too many bits requested”,
Null).

If (requested_security_strength > security_strength), then Return (“Invalid
requested_security_strength”, Null).

Comment: Invoke the generate algorithm.

(status, pseudorandom_bits, V, Key, reseed_counter) =
HMAC_DRBG_Generate_algorithm (V, Key, reseed_counter,
requested_number_of_bits).
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6. If (status = “Reseed required”), then Return (“DRBG can no longer be used. A
new instantiation is required”, Null).

7. Update the changed state values.
7.1 internal_state (state_handle).V = V.
7.2 internal_state (state_handle).Key = Key.
7.3 internal_state (state_handle).reseed_counter = reseed_counter.
8. Return (“Success”, pseudorandom_bits).
HMAC _DRBG_Generate_algorithm:
Input: bitstring (V, Key), integer (reseed_counter, requested_number_of bits).
Output: string status, bitstring (pseudorandom_bits, V, Key), integer reseed_counter.
Process:

1 If (reseed_counter > 10,000), then Return (“Reseed required”, Null, V, Key,
reseed_counter).

2. temp = Null.

3 While (len (temp) < requested_no_of bits) do:

3.1 V=HMAC (Key V).

3.2 temp=temp]|| V.

pseudorandom_bits = leftmost (temp, requested_no_of_bits).
(Key, V) = HMAC_DRBG_Update (Null, Key, V).

reseed counter = reseed_counter + 1.

N o o &

Return (“Success”, pseudorandom_bits, V, Key, reseed_counter).

B.3 CTR_DRBG Example Using a Derivation Function

This example of CTR_DRBG uses AES-128 and uses the entire input block as the counter
field. The reseed and prediction resistance capabilities are supported, and prediction
resistance is obtained during every Get_entropy_input call and reseed request. Although
the prediction_resistance_request parameter in the Get_entropy_input and reseed request
could be omitted, in this case, they are shown in the pseudocode as a reminder that
prediction_resistance will be performed. A block cipher derivation function using AES-
128 is used, and a personalization string and additional input are supported. A total of five
internal states are available. For this implementation, the functions and algorithms are
written as separate routines. AES_ECB_Encrypt is the Block_Encrypt function
(specified in Section 10.3.3) that uses AES-128 in the ECB mode.

The nonce for instantiation (instantiation_nonce) consists of a 32-bit incrementing counter.
The nonce is initialized when the DRBG is instantiated (e.g., by a call to the clock or by
setting it to a fixed value) and is incremented for each instantiation.
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The internal state contains the values for V, Key, reseed_counter, and security_strength,
where V and Key are bitstrings, and all other values are integers. Since prediction
resistance is known to be supported, there is no need for prediction_resistance_flag in the
internal state.

In accordance with Table 3 in Section 10.2.1, security strengths of 112 and 128 bits may be
supported. Using AES-128, the following definitions are applicable for the instantiate,
reseed and generate functions:

1.

2
3.
4

9.

10.

11.

B.3.1

highest_supported_security_strength = 128.
Input/output block length (blocklen) = 128 bits.
Key length (keylen) = 128 bits.

Required minimum entropy for the entropy input during instantiation and reseeding
= security_strength.

Minimum entropy input length (min _length) = security_strength bits.
Maximum entropy input length (max _length) = 1000 bits.

Maximum personalization string input length
(max_personalization_string_input_length) = 800 bits.

Maximum additional input length (max_additional_input_length) = 800 bits.
Seed length (seedlen) = 256 bits.

Maximum number of bits per request (max_number_of bits_per_request) = 4000
bits.

Reseed interval (reseed_interval) = 100,000 requests.

The CTR_DRBG_Update Function

CTR_DRBG_Update:
Input: bitstring (provided_data, Key, V).
Output: bitstring (Key, V).
Process:

1. temp = Null.

2. While (len (temp) < 256) do
2.1 V=(V+1) mod 2%,
2.2 output_block = AES_ECB_Encrypt (Key, V).
2.3 temp =temp || ouput_block.

3. temp = leftmost (temp, 256).

4 temp =temp @ provided_data.
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Key = leftmost (temp, 128).
6. V =rightmost (temp, 128).
7. Return (Key, V).

B.3.2 Instantiation of CTR_DRBG Using a Derivation Function

This implementation will return a text message and an invalid state handle (—1) when an error
is encountered. Block_Cipher_df is the derivation function in Section 10.3.2, and uses AES-
128 in the ECB mode as the Block_Encrypt function.

Note that this implementation does not include the prediction_resistance_flag in the input
parameters, nor save it in the internal state, since prediction resistance is known to be
supported.

CTR_DRBG_Instantiate_function:

Input: integer (requested_instantiation_security_strength), bitstring
personalization_string.

Output: string status, integer state_handle.
Process:

Comment: Check the validity of the input
parameters.

1. If (requested_instantiation_security_strength > 128) then Return (“Invalid
requested_instantiation_security_strength”, —1).

2. If (len (personalization_string) > 800), then Return (“Personalization_string
too long”, —1).

3. If (requested_instantiation_security_strength < 112), then security_strength =
112

Else security_strength = 128.
Comment: Get the entropy input.

4. (status, entropy_input) = Get_entropy_input (security_strength,
security_strength, 1000, prediction_resistance_request).

5. If (status = “Success”), then Return (status, —1).

Comment: Increment the nonce; actual coding
must ensure that the nonce wraps when its
storage limit is reached, and that the counter
pertains to all instantiations, not just this one.

6. instantiation_nonce = instantiation_nonce + 1.
Comment: Invoke the instantiate algorithm.
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7. (V, Key, reseed_counter) = CTR_DRBG_ Instantiate_algorithm
(entropy_input, instantiation_nonce, personalization_string).

Comment: Find an available internal state and
save the initial values.

8. (status, state_handle) = Find_state_space ().
9. If (status = “Success”), then Return (status, —1).
10. Save the internal state.
10.1 internal_state (state_handle).V =V.
10.2 internal_state_(state_handle).Key = Key.
10.3 internal_state (state_handle).reseed counter = reseed_counter.
10.4 internal_state  (state_handle).security_strength = security_strength.
11. Return (“Success”, state_handle).

CTR_DRBG_Instantiate_algorithm:
Input: bitstring (entropy_input, nonce, personalization_string).

Output: bitstring (V, Key), integer (reseed_counter).

Process:

B.3.3

1. seed material = entropy_input || nonce || personalization_string.

seed_material = Block_Cipher_df (seed_material, 256).
Key = 0%, Comment: 128 bits.
V=0, Comment: 128 bits.

(Key, V) = CTR_DRBG_Update (seed_material, Key, V).
reseed counter = 1.

N o g bk~ N

Return (V, Key, reseed_counter).

Reseeding a CTR_DRBG Instantiation Using a Derivation Function

The implementation is designed to return a text message as the status when an error is
encountered.

CTR_DRBG_Reseed_function:

Input: integer (state_handle), integer prediction_resistance_request, bitstring
additional_input.

Output: string status.

Process:

Comment: Check for the validity of
state_handle.
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1. If ((state_handle < 0) or (state_handle > 4) or (internal_state (state_handle) =
{Null, Null, 0, 0}), then Return (“State not available for the indicated
state_handle”).

2. Get the internal state values.
2.1 V =internal_state (state_handle).V.
2.2 Key = internal_state (state_handle).Key.
2.3 security_strength = internal_state (state_handle).security_strength.
3. If (len (additional_input) > 800), then Return (“additional_input too long”).

4. (status, entropy_input) = Get_entropy_input (security_strength,
security_strength, 1000, prediction_resistance_request).

6. If (status = “Success”), then Return (status).
Comment: Invoke the reseed algorithm.

7. (V, Key, reseed counter) = CTR_DRBG_Reseed_algorithm (V, Key,
reseed_counter, entropy_input, additional_input).

8. Save the internal state.
8.1 internal_state (state_handle). V = V.
8.2 internal_state (state_handle). Key = Key.
8.3 internal_state (state_handle). reseed_counter = reseed_counter.
8.4 internal_state (state_handle). security_strength = security_strength.
9. Return (“Success”).
CTR_DRBG_Reseed_algorithm:

Input: bitstring (V, Key), integer (reseed_counter), bitstring (entropy_input,
additional_input).

Output: bitstring (V, Key), integer (reseed_counter).

Process:
1. seed material = entropy_input || additional_input.
2. seed_material = Block_Cipher_df (seed_material, 256).
3. (Key, V) =CTR_DRBG_Update (seed_material, Key, V).
4. reseed counter = 1.
5. ReturnV, Key, reseed_counter).

B.3.4 Generating Pseudorandom Bits Using CTR_DRBG

The implementation returns a Null string as the pseudorandom bits if an error has been
detected.
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CTR_DRBG_Generate_function:
Input: integer (state_handle, requested_no_of bits, requested _security_strength,

prediction_resistance_request), bitstring additional _input.

Output: string status, bitstring pseudorandom_bits.

Process:

1.

Comment: Check the validity of state_handle.

If ((state_handle < 0) or (state_handle > 4) or (internal_state (state_handle) =
{Null, Null, 0, 0}), then Return (*“State not available for the indicated
state_handle”, Null).

Get the internal state.

2.1 V =internal_state (state_handle).V.

2.2 Key =internal_state (state_handle).Key.

2.3 security_strength = internal_state (state_handle).security_strength.
2.4 reseed_counter = internal_state (state_handle).reseed_counter.

Comment: Check the rest of the input
parameters.

If (requested_no_of bits > 4000), then Return (“Too many bits requested”,
Null).

If (requested_security_strength > security_strength), then Return (“Invalid
requested_security_strength”, Null).

If (len (additional_input) > 800), then Return (“additional_input too long”,
Null).

reseed_required_flag = 0.
If ((reseed_required_flag = 1) OR (prediction_resistance_flag = 1)), then

7.1 status=CTR_DRBG_Reseed function (state_handle,
prediction_resistance_request, additional_input).

7.2 If (status = “Success”), then Return (status, Null).

7.3  Get the new working state values; the administrative information was not
affected.

7.3.1 V =internal_state (state_handle).V.

7.3.2 Key =internal_state (state_handle).Key.

7.3.3 reseed_counter = internal_state (state_handle).reseed_counter.
7.4 additional_input = Null.
7.5 reseed _required_flag = 0.
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Comment: Generate bits using the generate
algorithm.

8. (status, pseudorandom_bits, V, Key, reseed_counter) =
CTR_DRBG_Generate_algorithm (V, Key, reseed_counter,
requested_number_of bits, additional_input).

9. If (status = “Reseed required”), then
9.1 reseed_required flag = 1.
9.2 Gotostep?7.
10. Update the internal state.
10.1 internal_state (state_handle).V = V.
10.2 internal_state (state_handle).Key = Key.
10.3 internal_state (state_handle).reseed_counter = reseed_counter.
10.4 internal_state (state_handle).security_strength = security_strength.
11. Return (“Success”, pseudorandom_hits).
CTR_DRBG_Generate_algorithm:

Input: bitstring (V, Key), integer (reseed_counter, requested_number_of_bits)
bitstring additional_input.

Output: string status, bitstring (returned_bits, V, Key), integer reseed_counter.
Process:

1. If (reseed_counter > 100,000), then Return (“Reseed required”, Null, V,
Key, reseed_counter).

2. If (additional_input = Null), then
2.1 additional_input = Block_Cipher_df (additional_input, 256).
2.2 (Key, V) = CTR_DRBG_Update (additional_input, Key, V).
Else additional_input = 0%°.
3. temp = Null.
4. While (len (temp) < requested_number_of_bits) do:
41 V=(V+1)mod2
4.2 output_block = AES_ECB_Encrypt (Key, V).
4.3 temp =temp || ouput_block.
5. returned_bits = leftmost (temp, requested _number_of bits)
6. (Key, V) =CTR_DRBG_Update (additional_input, Key, V)
7. reseed_counter = reseed_counter + 1.
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8. Return (“Success”, returned_bits, V, Key, reseed_counter).

B.4 CTR_DRBG Example Without a Derivation Function

This example of CTR_DRBG is the same as the previous example except that a derivation
function is not used (i.e., full entropy is always available). As in Appendix B.3, the
CTR_DRBG uses AES-128. The reseed and prediction resistance capabilities are
available. Both a personalization string and additional input are supported. A total of five
internal states are available. For this implementation, the functions and algorithms are
written as separate routines. AES_ECB_Encrypt is the Block_Encrypt function
(specified in Section 10.3.3) that uses AES-128 in the ECB mode.

The internal state contains the values for V, Key, reseed_counter, and security_strength,
where V and Key are strings, and all other values are integers.Since prediction resistance is
known to be supported, there is no need for prediction_resistance_flag in the internal state.

In accordance with Table 3 in Section 10.2.1, security strengths of 112 and 128 bits may be
supported. The definitions are the same as those provided in Appendix B.3, except that to
be compliant with Table 3, the maximum size of the personalization_string is 256 bits. In
addition, the maximum size of any additional_input is 256 bits (i.e., len (additional_input
< seedlen)).

B.4.1 The CTR_DRBG_Update Function
The update function is the same as that provided in Appendix B.3.1.
B.4.2 Instantiation of CTR_DRBG Without a Derivation Function

The instantiate function (CTR_DRBG_Instantiate_function) is the same as that provided
in Appendix B.3.2, except for the following:
e Step 2 is replaced by:

If (len (personalization_string) > 256), then Return (“Personalization_string too
long”, -1).

e Step 6is replaced by :
instantiation_nonce = Null.

The instantiate algorithm (CTR_DRBG _ Instantiate_algorithm) is the same as that
provided in Appendix B.3.2, except that steps 1 and 2 are replaced by:
temp = len (personalization_string).
If (temp < 256), then personalization_string = personalization_string || 02",

seed_material = entropy_input @ personalization_string.
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B.4.3 Reseeding a CTR_DRBG Instantiation Without a Derivation
Function

The reseed function (CTR_DRBG_Reseed_function) is the same as that provided in
Appendix B.3.3, except that step 3 is replaced by:
If (len (additional_input) > 256), then Return (“additional_input too long”).

The reseed algorithm (CTR_DRBG_Reseed_algorithm) is the same as that provided in
Appendix B.3.3, except that steps 1 and 2 are replaced by:

temp = len (additional_input).

If (temp < 256), then additional_input = additional_input || 0™,

seed_material = entropy_input & additional_input.
B.4.4 Generating Pseudorandom Bits Using CTR_DRBG
The generate function (CTR_DRBG_Generate_function) is the same as that provided in
Appendix B.3.4, except that step 5 is replaced by :

If (len (additional_input) > 256), then Return (“additional_input too long”, Null).

The generate algorithm (CTR_DRBG_Generate_algorithm) is the same as that provided
in Appendix B.3.4, except that step 2.1 is replaced by:

temp = len (additional_input).

If (temp < 256), then additional_input = additional_input || 0%,
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Appendix C: (Informative) DRBG Mechanism Selection

Almost no application or system designer starts with the primary purpose of generating
good random bits. Instead, the designer typically starts with a goal that he wishes to
accomplish, then decides on cryptographic mechanisms, such as digital signatures or block
ciphers that can help him achieve that goal. Typically, as the requirements of those
cryptographic mechanisms are better understood, he learns that random bits will need to be
generated, and that this must be done with great care so that the cryptographic mechanisms
will not be weakened. At this point, there are three things that may guide the designer's
choice of a DRBG mechanism:

a. He may already have decided to include a set of cryptographic primitives as part of
his implementation. By choosing a DRBG mechanism based on one of these
primitives, he can minimize the cost of adding that DRBG mechanism. In
hardware, this translates to lower gate count, less power consumption, and less
hardware that must be protected against probing and power analysis. In software,
this translates to fewer lines of code to write, test, and validate.

For example, a module that generates RSA signatures has an available hash
function, so a hash-based DRBG mechanism (e.g., Hash_DRBG or
HMAC_DRBG) is a natural choice.

b. He may already have decided to trust a block cipher, hash function, or keyed hash
function to have certain properties. By choosing a DRBG mechanism based on
similar properties, he can minimize the number of algorithms he has to trust.

For example, an AES-based DRBG mechanism (i.e., CTR_DRBG using AES)
might be a good choice when a module provides encryption with AES. Since the
security of the module is dependent on the strength of AES, the module’s security is
not made dependent on any additional cryptographic primitives or assumptions.

c. Multiple cryptographic primitives may be available within the system or
consuming application, but there may be restrictions that need to be addressed (e.g.,
code size or performance requirements).

For example, a module with support for both hash functions and block ciphers
might use the CTR_DRBG if the ability to parallize the generation of random bits
is needed.

The DRBG mechanisms specified in this Recommendation have different performance
characteristics, implementation issues, and security assumptions.

C.1 Hash_DRBG

Hash_DRBG is based on the use of an approved hash function in a counter mode similar
to the counter mode specified in NIST SP 800-38A. For each generate request, the current
value of V (a secret value in the internal state) is used as the starting counter that is
iteratively changed to generate each successive outlen-bit block of requested output, where
outlen is the number of bits in the hash function output block. At the end of the generate
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request, and before the pseudorandom output is returned to the consuming application, the
secret value V is updated in order to prevent backtracking.

Performance. The Generate function is parallelizable, since it uses the counter mode.
Within a generate request, each outlen-bit block of output requires one hash function
computation and several addition operations; an additional hash function computation is
required to provide the backtracking resistance. Hash_DRBG produces pseudorandom
output bits in about half the time required by HMAC_DRBG.

Security. Hash_DRBG’s security depends on the underlying hash function’s behavior
when processing a series of sequential input blocks. If the hash function is replaced by a
random oracle, Hash_DRBG is secure. It is difficult to relate the properties of the hash
function required by Hash_DRBG with common properties, such as collision resistance,
pre-image resistance, or pseudorandomness. There are known problems with
Hash_DRBG when the DRBG is instantiated with insufficient entropy for the requested
security strength, and then later provided with enough entropy to attain the amount of
entropy required for the security strength, via the inclusion of additional input during a
generate request. However, these problems do not affect the DRBG’s security when
Hash_DRBG is instantiated with the amount of entropy specified in this
Recommendation.

Constraints on Outputs. As shown in Table 2 of Section 10.1, for each hash function, up
to 2*® generate requests may be made, each of up to 2* bits.

Resources. Hash_DRBG requires access to a hash function, and the ability to perform
addition with seedlen-bit integers. Hash_DRBG uses the hash-based derivation function
Hash_df (specified in Section 10.3.1) during instantiation and reseeding. Any
implementation requires the storage space required for the internal state (see Section
10.1.1.1).

Algorithm Choices. The choice of hash functions that may be used by Hash_DRBG is
discussed in Section 10.1.

C.2 HMAC_DRBG

HMAC_DRBG is built around the use of an approved hash function using the HMAC
construction. To generate pseudorandom bits from a secret key (Key) and a starting value
V, the HMAC_DRBG computes

V = HMAC (Key, V).
At the end of a generation request, the HMAC_DRBG generates a new Key and V, each
requiring one HMAC computation.

Performance. HMAC_DRBG produces pseudorandom outputs considerably more
slowly than the underlying hash function processes inputs; for SHA-256, a long generate
request produces output bits at about 1/4 of the rate that the hash function can process
input bits. Each generate request also involves additional overhead equivalent to
processing 2048 extra bits with SHA-256. Note, however, that hash functions are typically
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quite fast; few if any consuming applications are expected to need output bits faster than
HMAC_DRBG can provide them.

Security. The security of HMAC_DRBG is based on the assumption that an approved
hash function used in the HMAC construction is a pseudorandom function family.
Informally, this means that when an attacker does not know the key used, HMAC outputs
look random, even given knowledge and control over the inputs. In general, even
relatively weak hash functions seem to be quite strong when used in the HMAC
construction. On the other hand, there is not a reduction proof from the hash function’s
collision resistance properties to the security of the DRBG,; the security of HMAC_DRBG
ultimately relies on the pseudorandomness properties of the underlying hash function. Note
that the pseudorandomness of HMAC is a widely used assumption in designs, and the
HMAC_DRBG requires far less demanding properties of the underlying hash function
than Hash_DRBG.

Constraints on Outputs. As shown in Table 2 of Section 10.1, for each hash function, up
to 2* generate requests may be made, each of up to 2*° bits.

Resources. HMAC_DRBG requires access to a dedicated HMAC implementation for
optimal performance. However, a general-purpose hash function implementation can
always be used to implement HMAC. Any implementation requires the storage space
required for the internal state (see Section 10.1.2.1).

Algorithm Choices. The choice of hash functions that may be used by HMAC_DRBG is
discussed in Section 10.1.

C.3 CTR_DRBG

CTR_DRBG is based on using an approved block cipher algorithm in counter mode (see
SP 800-38A). At the present time, only three-key TDEA and AES are approved for use
by the Federal government for use in this DRBG mechanism. Pseudorandom outputs are
generated by encrypting successive values of a counter; after a generate request, a new key
and new starting counter value are generated.

Performance. For large generate requests, CTR_DRBG produces outputs at the same
speed as the underlying block cipher algorithm encrypts data. Furthermore, CTR_DRBG
is parallelizeable. At the end of each generate request, work equivalent to two, three or
four encryptions is performed, depending on the choice of underlying block cipher
algorithm, to generate new keys and counters for the next generate request.

Security. The security of CTR_DRBG is directly based on the security of the underlying
block cipher algorithm, in the sense that, as long as some limits on the total number of
outputs are observed, any attack on CTR_DRBG represents an attack on the underlying
block cipher algorithm.

Constraints on Outputs. As shown in Table 3 of Section 10.2.1, for each of the three
AES key sizes, up to 2*® generate requests may be made, each of up to 2*° bits, with a
negligible chance of any weakness that does not represent a weakness in AES. However,
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the smaller block size of TDEA imposes more constraints: each generate request is limited
to 2" bits, and at most, 2% such requests may be made.

Resources. CTR_DRBG may be implemented with or without a derivation function.

When a derivation function is used, CTR_DRBG can process the personalization string
and any additional input in the same way as any other DRBG mechanism, but at a cost in
performance because of the use of the derivation function (as opposed to not using the
derivation function; see below). Such an implementation may be seeded by any approved
randomness source that may or may not provide full entropy.

When a derivation function is not used, CTR_DRBG is more efficient when the
personalization string and any additional input are provided, but is less flexible because the
lengths of the personalization string and additional input cannot exceed seedlen bits. Such
implementations must be seeded by a randomness source that provides full entropy (e.g.,
an approved entropy source that has full entropy output or an approved NRBG).

CTR_DRBG requires access to a block cipher algorithm, including the ability to change
keys, and the storage space required for the internal state (see Section 10.2.1.1).

Algorithm Choices. The choice of block cipher algorithms and key sizes that may be
used by CTR_DRBG is discussed in Section 10.2.1.

C.4 Summary for DRBG Selection

Table C-1 provides a summary of the costs and constraints of the DRBG mechanisms in
this Recommendation.

Table C-1: DRBG Mechanism Summary

Dominating Cost/Block | Constraints (max.)

Hash_DRBG 2 hash function calls 2 calls of 2 bits
HMAC_DRBG 4 hash function calls | 2 calls of 2% bits
CTR_DRBG (TDEA) 1 TDEA encrypt 2% calls of 22 bits
CTR_DRBG (AES) 1 AES encrypt 2% calls of 2 bits
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Appendix F : (Informative) Revisions

This original version of this Recommendation was completed in June, 2006. In March 2007,
the following changes were made (note that the changes are indicated in italics):

1. Section 8.3, item 1.a originally stated the following:

“One or more values that are derived from the seed and become part of the
internal state; these values must usually remain secret”

The item now reads:

“One or more values that are derived from the seed and become part of the
internal state; these values should remain secret”.

In Section 8.4, the third sentence originally stated:

“Any security strength may be requested, but the DRBG will only be
instantiated to one of the four security strengths above, depending on the
DRBG implementation.”

The sentence now reads:

“Any security strength may be requested (up to a maximum of 256 bits), but the
DRBG will only be instantiated to one of the four security strengths above,
depending on the DRBG implementation.”

In Section 8.7.1, the list of examples of information that could appear in a
personalization string included privater keys, PINs and passwords. These items
were removed from the list, and seedfiles were added.

In Section 10.3.1.4, a step was inserted that will provide backtracking resistance
(step 14 of the pseudocode). The same change was made to the example in
Appendix B.5.3 (step 19.1). In addition, the two occurrences of block_counter (in
input 1 and processing step 1) were corrected to be reseed_counter.

This Recommendation was developed in concert with American National Standard (ANS)
X9.82, a multi-part standard on random number generation. Many of the DRBGS in this
Recommendation and the requirements for using and validating them are also provided in
ANS X9.82, Part 3. Other parts of that Standard discuss entropy sources and RBG
construction. During the development of the latter two documents, the need for additional
requirements and capabilities for DRBGs were identified. As a result, the following changes
were made to this Recommendation in August 2008 :

1.

Definitions have been added in Section 4 for the following: approved entropy
source, DRBG mechanism, fresh entropy, ideal random bitstring, ideal random
sequence and secure channel. The following definitions have been modified:
backtracking resistance, deterministic random bit generator (DRBG), entropy,
entropy input, entropy source, full entropy, min-entropy, prediction resistance,
reseed, security strength, seed period and source of entropy input.

In Section 6, a link was provided to examples for the DRBGs specified in this
Recommendation.
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3.

10.

11.

In Section 7.2, paragraph 3. 2™ sentence: The “should” has been changed to
“shall”, so that the sentence now reads:

The personalization string shall be unique for all instantiations of the same
DRBG mechanism type (e.g., HMAC_DRBG).

In Section 8.2, paragraph 2, additional text was added to the the first sentence,
which now reads:

A DRBG is instantiated using a seed and may be reseeded; when reseeded, the
seed shall be different than the seed used for instantiation.

In Section 8.5, Figure 4 has been updated, and the last paragraph has been revised
to discuss the use of a secure channel.

In Sections 8.6.5 and 8.6.9, statements were inserted that prohibit a DRBG
instantiation from reeeding itself.

References to “entropy input” have been removed from Section 8.6.9.

Section 8.8: An example was added to further clarify the meaning of prediction
resistance.

In Section 9, a prediction_resistance_request parameter has been added to the
Get_entropy_input call, along with a description of its purpose to the text
underneath the call.

In Section 9, a footnote was inserted to explain why a
prediction_resistance_requst parameter may be useful in the Get_entropy_input
call.

In Section 9.1, the following changes were made:

e The following sentence has been added to the description of the
prediction_resistance_flag:

In addition, step 6 can be modified to not perform a check for the
prediction_resistance_flag when the flag is not used in an implementation ; in
this case, the Get_entropy_input call need not include the
prediction_resistance_request parameter.

e The following requirement has been added to the Required information not
provided by the consuming application during instantiation.

This input shall not be provided by the consuming application as an input
parameter during the instantiate request.

e A prediction_resistance_request parameter has been added to the
Get_entropy_input call of step 6 of the Instantiate Process.

e Step 5 was originally intended for implementations of the Dual EC_DRBG
to select an appropriate curve. This function is now performed by the
Dual_EC_DRBG’s Instantiate_algorithm. Changes were made to provide the
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12.

13.

14.

15.

16.

17.

18.

19.

security strength to the Instantiate_algorithm. The Instantiate_algortihm for
each DRBG was changed to allow the input of the security strength.

In Section 9.2, the following changes have been made:

e A prediction_resistance_request parameter has been added to the
Reseed_function call.

e A description of the parameter has been added below the function call.

e A step was inserted that checked a request for prediction resistance (via the
prediction_resistance_request parameter) against the state of the
prediction_resistance_flag that may have been set during instantiation.

e A prediction_resistance_request parameter has been added to the
Get_entropy_input call of (newly numbered) step 4 of the Reseed Process.

e In the description of the entropy_input parameter, a restriction was added that
the entropy_input is not to be provided by the instantiation being reseeded. by
the DRBG instantiation being reseeded.

e A footnote was inserted to explain why the prediction_resistance_request
parameter might be useful.

In Section 9.3.1, the following changes were made:
e Text has been added to item to refer to the Reseed_function.

e A prediction_resistance_request parameter has been added to the
Get_entropy_input call of step 7.1 of the Generate Process.

e A substep was inserted in step 9 of the Generate Process to check the
prediction_resistance request against the state of the
prediction_resistance_flag.

In Section 9.3.2, step e, a phrase addressing the presence of the
prediction_resistance_request indicator was inserted.

In Sections 10.1 and 10.3.1, the new hash functions approved in FIPS 180-4 have
been added.

In Sections 10.1.2 (HMAC_DRBG) and 10.2.1 (CTR_DRBG), the update
functions have been renamed to reflect the DRBG with which they are associated
(i.e., renamed ro HMAC_DRBG_Update and CTR_DRBG_Update).

In Section 10.1.2.1, the last paragraph has been revised to indicate that only the
Key is considered to be a critical value.

In Sections 10.1.2.3, 10.2.1.3.1, 10.2.1.3.2 and 10.3.1.2, the description of the
personalization_string has been revised to indicate that the length the
personalization_string may be zero.

In Section 10.2.1.5, the following statement has been added to the first paragraph:

100



NIST SP 800-90A, Rev. 1 November 2014

20.

21.

22,

23.

24,

If the derivation function is not used, then the maximum allowed length of
additional_input = seedlen.

In Section 10.3.1.2, the specification was changed to select an elliptic curve and
return the parameters of that curve to the Instantiate_function that called the
routine.

In the first paragraph of Appendix A.1, a statement has been added that if
alternative points are desired, they shall be generated as specified in Appendix
A.2.

The original Appendices C and D on entropy sources and RBG constructions,
respectively, have been removed and the topics will be discussed in SP 800-90B
and C

In Appendix C.2 (originally Appendix E.2), a paragraph has been inserted after
the table of E values that discusses the analysis associated with the table values.

The additional uses of the prediction_resistance_request parameter (as specified
in Section 9) have been added to the following appendices:

e D.1.1,step 4,

e D.1.2, Input and step 4;

e D.1.3,step 7.1;

e D.3.2, step 4,

e D.3.3, Input and step 4; and
o D.34, step7.1.

25. The name of the update call has been changed in the following appendices:

26.

e D.2.1, step 4;

e D.2.2,step 5;

e D.3.1, title; and
e D.4.1, title.

In Appendix D.3 (originally Appendix F.3), the first paragraph, which discusses
the example, has been modified to discuss the prediction_resistance_request
parameter in the Get_entropy_input call.

27. In Appendix D.5 (originally Appendix F.5), the description of the example in

paragraph 2 has been changed so that the example does not include prediction
resistance, and the definition for the reseed_interval has been removed from the
list. The Dual_EC _Instantiate_function has been modified to reflect the changes
made to the Instantiate_function and Instantiate_algorithm (see the last bullet of
modification 8 above). In addition, the pseudocode for the Reseed_function has
been removed, and steps in F.5.1 and F.5.2 that dealt with reseeding have been
removed.
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In 2014, the following substantive changes were made to revision 2 of SP 800-90A:

1.

The following definitions were modified to be consistent with definitions in other
parts of this Recommendation: backtracking resistence, entropy source, non-
deterministic random bit generator, prediction resistance, and source of entropy
input. The following definitions have been removed: public key and public-key
pair. A definition for "randomness source™ has been added, and the definition of
"source of entropy input” has been removed.

The term "source of entropy input™ has been replaced by "randomness source™ to
avoid confusion with between the terms "entropy source input,” which is used in SP
800-90C to mean input from an entropy source, whereas a "randomness source"
(formerly "source of entropy input™) could be an entropy source, an NRBG or a
DRBG.

Section 5: The ECDLP abbreviation and the floor, ceiling and gcd symbols were
removed. Definitions of the leftmost, rightmost and min functions have been added,
and have been used throughout the document.

Section 6: The reference to number-theoretic problems was removed, as well as the
old Appendix A that provided security considerations for DRBGs based on elliptic
curves, the old Appendix F that listed shall statements.

Section 7: The first paragraph has been modified, and includes an additional shall
statement. In Section 7.1, the first two sentences have been modified for clarity. In
Section 7.2, the second paragraph and the first sentence of the third paragraph have
been modified for clarity; the personalization string is now recommended, rather
than required, to be unique. In Section 7.4, the second item has been modified for
clarity, and the last paragraph has been removed, since it was not needed here.

Section 8: In Section 8.1, the second sentence has been modified for clarity. In
Section 8.2, additional text has been added to the last sentence for clarity. In
Section 8.3, item 1b, the reference to blocks was removed, since it pertained to the
Dual_ EC_DRBG. In Section 8.4, the third sentence is a general statement that
replaces the last two sentences of that paragraph; the subject with more detail is
now discussed below Table 1. In the paragraph under Figure 4, text has been
inserted in teh nsecond sentence for clarity. The first sentence of the next paragraph
has been modified for clarity, and an additional paragraph has been added to the
section to mention the relationahip between a DRBG sub-boundary and a
cryptographic module boundary.

Section 8.5: A reference to the cryptographic boundary for FIPS 140 has been
inserted in bold to draw the reader’s attention to the fact that it is different than the
DRBG’s boundaries. In the paragraph under item 3, an example has been provided
for clarity. In the following two paragraphs, a reference to SP 800-90C has been
inserted to direct the reader to that document for further discussion on
cryptographic module boundaries.

Section 8.6: In Section 8.6.2, a reference to fresh entropy has been inserted in the
second sentence. In Section 8.6.3, text has been inserted at the end of the second
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10.

11.

12.

sentence for clarity. In Section 8.6.4, a shall statement has been inserted at the end
of the first sentence. Sections 8.6.5 and 8.6.7 were revised to clarify the source of
the entropy input and nonce. In Section 8.6.6, text was inserted that states that
entropy input is a critical security parameter for cryptographic module validation.
Section 8.6.7 was modified to provide more information about suitable nonces and
to state that the uniqueness of the nonce is applicable to the cryptographic module
in which it is used, and to indicate that the nonce is a critical security parameter. In
Section 8.6.8, text was added about enforcing the seedlife. In Section 8.6.9,
‘DRBG’ was changed to ‘DRBG instantiation’ for clarity.

Section 8.7: Sections 8.7.1 and 8.7.2 have been modified to clarify that the optional
personalization string and additional input may be obtained from outside a
cryptographic module, that the personalization string is not a critical security
parameter, and that the additional input may be a critical security parameter if
secret information is included.

Section 8.8: The last sentence of the second paragraph under the list has “direct or
indirect’ inserted for clarity. A paragraph has been added to the end of the section
to recommend reseeding whenever possible.

Section 9:A paragraph discussing the pseudocode used has been inserted at the
beginning of the section, and modifications to the third and fourth paragraphs have
been made for clarity; text has also been added to the next-to-last paragraph that
dicusses error codes more thoroughly. The last sentence in the third paragraph has
been modified to only require that the entropy input and nonce be provided as
discussed in Sections 8.6.5 and 8.6.7 and in SP 800-90C. A paragraph has been
added to discuss checking the status code. In Section 9.2, clarifying information has
been inserted about the prediction_resistance_request parameter. In Sections 9.1,
9.2 and 9.3, returns to the consuming application have been modified for those
cases where other than SUCCESS is appropriate as a status to be returned from the
function (e.g., parameter errors, entropy unavailablility or entropy source failure);
this change was made to better accommodate the various Get_entropy_input
constructions specified in SP 800-90C. In Section 9.1 and 9.3.1, the item in the list
referring to elliptic-curve parameters was removed, and the discussion of the status
output has been modified for clarity.

Section 10: The Dual_EC_DRBG has been removed, and section numbers
adjusted accordingly. In Section 10.2.1, a paragraph under Table 3 for explanatory
purposes. In Section 10.2.1.3.2, the first paragraph has been modified for clarity.
Section 10.2 has been modified to allow the counter field to be a subset of the input
block and to allow either derivation function specified in the document; this is
indicated in step 2.1 of Section 10.2.1.2 and step 4.1 of Sections 10.2.1.5.1 and
10.2.1.5.2 (note that this change continues to allow the use of the entire input block
as the counter field, as was specified in the previous versions of this document;
Table 3 has been modified to include restrictions on the length of the counter field
and to indicate the restrictions on the number of bits that can be requested during a
single request as a function of the counter-field length and the previous restriction

103



NIST SP 800-90A, Rev. 1 November 2014

13.

14.

15.

16.

17.

18.
19.

on the number of bits that could be requested. The first paragraphs of Sections 10.3
and 10.3.2 have been modified slightly for clarity.

Section 11: The third paragraph has been added for clarity, and the last sentence of
the next paragraph has been removed. In Section 11.1, the references to the
Dual_EC_DRBG have been removed from the third and fifth bullet, and the
wording of the next-to-last bullet has been modified to be conditional. In Section
11.3, the health testing requirements have been modified.

The previous Appendix A was removed; this appendix contained application-
specific constants for the Dual EC_DRBG.

Appendix B now contains the pseudocode examples previously provided in
Appendix D, less examples for the Dual_ EC_DRBG. In Appendix B.4, the
disuccion of the example has been changed slightly.

The previous Appendix C was removed; this appendix contained security
considerations relating to the Dual EC_DRBG.

The new Appendix C is the same as the previous Appendix E, minus the
Dual_EC_DRBG discussion.

The referenced documents now in Appendix D have been updated.

The previous Appendix F was removed; this appendix contained a list of shall
statements that could not be vaidated by NIST’s validation program.
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