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Abstract

Block ciphers are said to have key spaces large enough to prevent

a brute force attack from breaking them inside the lifetime of the at-

tacker. However, messages obscured using those ciphers are regularly

broken. Some are broken because of increased computer capabilities,

but others are broken because of industry reliance on invalid assump-

tions. These assumptions include the idea that all encrypted blocks

of text are equally likely to appear in a message and that only the

original key can decrypt a message. In this paper we show that infor-

mation theory techniques using isomorphs can reduce the key space to

a size that makes it possible the subsequent brute force attack possible

in a shorter and easily achievable time frame.

1 Info/Background

The most inefficient professionally accepted decryption technique, but the
only one guaranteed to succeed, is to systematically try every key in the
key space. Once the correct key is tried, the original message is recovered.
This attack is known as the “brute force” attack because no heuristics or
information learned during each decryption attempt are used to guide key
selection. Brute force attacks are slow. The average number of keys from
the key space (K) that must be attempted before recovering the key (ka) is
given by

ka =
|K|

2
(1)

Modern ciphers use techniques that are assumed to safeguard which can be
used to eliminate potential keys from the overall key space. These ciphers
also assume that the message itself gives no clues as to the key. If these
conditions are met the only effective attack left to the hacker is a brute force
attack. When using these techniques, the key space becomes a measure of
cipher strength. The larger the key space, the stronger the cipher.

Modern ciphers have large combinatoric key spaces, so that extensive
effort is expended in brute force attacks and it is statistically improbable to
break the cipher in a reasonable time. As a consequence, all messages using
modern ciphers should be theoretically secure. But messages encrypted using
these ciphers have been, and are, readily broken. There are two possible
reasons for these breaks: the solution space is not as large as previously
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thought and/or the ciphers are susceptible to heuristic attacks. This paper
will contest the argument of “statistical impossibility” and mathematically
demonstrates that the key solution space is not as large as currently believed.
This reduction in the key space is due to the existence of equivalent keys,
that give rise to “isomorphs.”

2 Discussion

2.1 Equivalent Keys

All ciphers are designed to exhibit a one-to-one mapping between PT and
CT . Each key maps the input message, M , to a unique cipher text encryption
Ek(M). Ideally each symbol in the language is used at least once in the
message in order to force every mapping to be solved. Let a “block” be a
group of |B| continuous characters treated as a single unit for encryption
and decryption. Most modern ciphers deal with blocks in the message at the
same time, encrypting them together instead of encrypting each symbol in
the language on its own. This type of cipher is known as a block cipher [4]
and is used to complicate breaking the cipher. However, there are cases when
several keys can yield the same decryption given the same input message. In
these cases Ec,ki

(M) = Ec,kj
(M), where i 6= j. Two keys (ki and kj) are

considered equivalent for a particular message and cipher if

Dc,ki
(M) = Dc,kj

(M) (2)

The existence of equivalent keys implies that a decryption solution does not
necessarily return the original mapping for all letters ∈ A. For any cipher
the key space consists of all of the symbol permutations that make up key
mappings.

Two variables (isoi and isoj where i 6= j) are said to be isomorphs of a
function (f(x)) if the variables are related in some manner to each other and

f(isoi) = f(isoj) (3)

There may be many isomorphs for a function. If those isomorphs are gathered
together in a set the set may be represented by a single member of the
set, called the “systematic isomorph.” When applied to the key (k) of an
encryption function (Ec,k) isomorphs result in the same cipher text for a
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message [1] for each isomorph. Isomorphs are keys that, when applied to
encryption or decryption of the same cipher, result in the same encryption
or decryption of the same message. Each equivalent key is an isomorph in
the key space of the cipher.

As an example of the impact of isomorphs, consider an alphabet A =
{a, b, c, d}. Further, let a substitution cipher that maps A 7→ A be applied
to a message. In this case the key space is 4! = 24 keys. For the message
M = abbbaba, applying the key k = {a, b, c, d} 7→ {b, a, d, c} results in the
encrypted message Ek(M) = baaababa. Multiple isomorphs exist in the
key space for this message. For example, the keys {b,a,c,d} and {b,a,d,c}
will result in exactly the same encryption and decryption, and are therefore
isomorphs. Twelve such isomorphic sets exist for this message.

This simple example does not address ciphers that are more complex than
a substitution cipher or block ciphers. It can be shown that all known ciphers,
including block cipher, are ultimately substitution ciphers [2]. Substitution
cipher keys are actually mappings from plain text (PT ) to cipher text (CT ),
which can be denoted for each character (i) by PTi 7→ CTi. Ciphers may
encrypt by operating on a single character in a message or operate on a block
of characters. If each block of characters is considered to be a character
composed of a group of language characters, or a “metacharacter,” of n

characters (denoted as “metancharacter” where n ∈ {2 ≤ n ≤ ℵ0}), then a
key for any size block becomes possible [3]. Therefore, all ciphers have the
same susceptibility to isomorphic reduction.

2.2 Isomorphic Reduction

In substitution ciphers, if not all of the characters (or metancharacters) in
the alphabet are used, then the existence of equivalent keys is possible [3].
Each group of isomorphs can be replaced by a systematic isomorph chosen
from the sets of equivalent keys. The key space then reduces to the number
of systematic isomorphs for a brute force attack. We call this elimination of
isomorphic keys “isomorphic reduction.” The reduction factor (R) for s sets
is

R =
1

|s|
(4)

The use of isomorph reduction can also be used on parts of the message
as well as on the entire message. Assume that a CT message is partially
decrypted with the unencrypted cipher text characters denoted by “*”’s. A
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segment of the message reads “iam∗egend.” The remaining isomorphs in the
key space with mappings that decrypt that specific section of the code with
any value for the unknown character are assembled for a brute force check.
Only the letter “l” makes sense in this section of code, requiring a mapping
∗ → l. All other isomorphs can then be eliminated.

Let M be a message composed of symbols x0, x1, ...xn in a language whose
alphabet is A. There are |A| symbols in the alphabet and ∀xi, xi ∈ A.
Further, let T be composed of all of the unique xi ∈ M and the cipher text
alphabet be represented by A′.
Theorem 1: For a S cipher applied to a message, M , there are (|A|− |T |)!
equivalent keys.

Proof: For two keys, ki and kj to be equivalent for a message, M ,

Eki
(M) = Ekj

(M) → Dki
(Ekj

(M)) = Dkj
(Eki

(M))

Let T be the set composed of each unique xi ∈ M . The partial key
T 7→ A′ contains all of the information required to decrypt M . Any key
containing the partial key T 7→ A′ will correctly decrypt M . The number of
symbols that do not appear in the message is given by |A| − |T |. Selecting
each of the unused symbols and counting the number of mappings for each
symbol gives (|A| − |T |)! possibilities. 2

As an example, consider an alphabet A 7→ A (a monoalphabetic map-
ping) using a S cipher. Further, let A = {0,1,2,3,4}, and a message M

= {11212112}. In this example, |A| = 5 and the number of mapped keys
|T | = 2. Of the five symbols in the alphabet, two are mapped. The map-
pings of the remainder of the symbols are irrelevant to the decryption of the
message. Assuming that the mappings for the characters in the message are
the characters c0 7→ ‘1’ and c1 7→ ‘2’, then the equivalent keys that correctly
decrypt the message (M) are:

{c2, c0, c1, c3, c4}

{c2, c0, c1, c4, c3}

{c3, c0, c1, c2, c4}

{c3, c0, c1, c4, c2}

{c4, c0, c1, c2, c3}

{c4, c0, c1, c3, c2}

or 6 keys rather than 120 keys in the keys space.
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Lemma 1: For a S cipher applied to a message (M), there are (|A| − |T |)!
isomorphic keys.

Proof: For two keys, ki and kj, to be equivalent for a message (M),

Eki
(M) = Ekj

(M) → Dkj
(Eki

(M)) = Dki
(Ekj

(M))

This lemma can be deduced from Wells’ isomorph [3] (equivalent key) argu-
ment which is given below:

Let x, y ∈ A. Let x be a plain text character and y be a cipher text
character. Without loss of generality, let x, y ∈ {0, ..., |A|−1}. A substitution
cipher with key k is an encryption such that ∀xi ∈ A, ∃!yi ∈ A such that
yi = xi + ki mod |A|. i 6= j implies that yj = xj + kj mod |A| is such that
yj 6= yi, xj 6= xi, and

kj 6= ki, ki, kj ∈ {0, ..., |A| − 1} ∀ y, x, k ∈ {0, ..., |A| − 1}

Let M be a message composed of letters x ∈ A such that {x ∈ M} ⊆ A.
Let this set {x ∈ M} = T . Without loss of generality, enumerate the xi ∈ T

such that i < j implies xi first appears in M prior to the first appearance of
xj, j 6= i. Let m = |T | and n ≥ |A|. Then we can write the enumerated set
T as

T = {x1, ..., xm}

For a substitution cipher with key k, we then have the enumerated cipher text
messages T ′ = {y1, ..., ym} with yi = xi + ki mod |A| ∀ xi ∈ T and with ki 6=
kj if i 6= j. Clearly (|T | = |T ′| = m) ≤ n. The substitution cipher over M

is then defined by k = {k0, ..., kn} where i < j ⇒ substitution ki; it first
occurs prior to the first occurrence of substitution kj in the encryption of M .
k can now be described as a tree. Given (xi, yi), ki is specified. There are
now |A| − 1 unspecified ki remaining in k and the total number of possible
specifications remaining is (|A| − 1)!.

Now given (x2, y2), k2 is also specified. There are now |A|−2 unspecified
ki remaining in k and the total number of possible remaining specifications
remaining is (|A| − 2)!. By induction, after the nth pair (xn, yn) and their
specified kn are given, there remain k − n unspecified substitutions and the
possible specifications is (|A| − n)! But, n = T , therefore, the number of
isomorphic keys that encrypt M into the same cipher text y is

|k| = (|A| − |T |)!

6



2

Equivalent keys, or isomorphs, set an upper bound on the key space for a
substitution cipher, eliminating all but the systematic isomorph for each set
of isomorphs. Any substitution cipher has a key space which can be limited
using isomorphs. Permutation ciphers (P) are a special case of a substitution
cipher in which the bits in a letter, or symbol, are reordered. Any mapping
which does not retain the same number of ‘0’ and ‘1’ bits in the symbol
are impossible. If a block (multi-letter) cipher is used those bits may be
spread across the entire block. However, for a block permutation if message
is treated as if the block is a single metacharacter the data is retained in the
metacharacter and the data is still limited to the same symbol. This allows
using the same procedure to place an upper bound on a permutation cipher
key space.

The number of equivalent keys in a P cipher also depends on the charac-
ters found in the message. Let B be the block of letters on which a P cipher
is applied. |B| is the number of bits being permuted with St being the static
bits in the block. Static bits are bits whose plain text value never changes
in the encoding of the plain text letter in an electronic representation, such
as ASCII. ASCII encoded lower case letters all begin with the most signifi-
cant bits ‘110,’ followed by the specific bits for each letter. The permutation
mapping is the same for each block. Static bits will be mapped to the same
location in the encrypted byte, and because they are static, the encrypted
bits are also static - unchanged in all blocks of the CT. Unchanging bits can
be exploited and are easily identified.

Let the number of static ones in a block of M be represented by |1′s|
and the number of static zeros be represented by |0′s|. Then let C =
min(|1′s|, |0′s|), giving the size of the least represented value of the static
bits. For example, assume that a P cipher is applied to a message comprised
exclusive of blocks consisting of ASCII encoded letters (no numbers, spaces
or punctuation) encrypted in three letter blocks. In this case there will be 9
static bits (3 blocks with three ‘110’ patterns), six ‘1’ bits and three ‘0’ bits
in each block. In this case, C = 3, the number of the ‘0’ static bits in the
block.

Theorem 2: For a P cipher applied to a message, M , there are
(|B| − |St|)!
(

|St|

C

)

equivalent keys.
Proof: Static bits in a P cipher can be found by using a modified inter-
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section. For two blocks, Bi and Bj, and bit n in those blocks (denoted by

Bi,n and Bj,n), let Bst = Bi
ˆ⋂Bj, where m is the number of bits in the block,

Bst = Bi
ˆ⋂

Bj =











0, if Bi,n = Bj,n = 0;
1, if Bi,n = Bj,n = 1;
x, if Bi,n 6= Bj,n.

For M , a bit, bi, is static iff ∀B ∈ M, bi 6= x. The static bit set, St,
is composed of the unique Bi,j that are static. The number of remaining
partial keys is the permutation of the dynamic bits, or (|B| − |St|)! because
the static key mappings are isomophic. The static bits can reduce the number
of equivalent keys, depending on the combination of static bits. Bits may

have one of two values, ‘1’ or ‘0’. There are

(

|St|

C

)

distinct possibilities for the

combinations of static ‘1’ and ‘0’ bits. The maximum number of equivalent
keys occurs when all of the static bits are of the same bit value. Dividing
the maximum number of equivalent keys by the number of unique static bit
combinations results in the total number of equivalent keys given by

(|B| − |St|)!
(

|St|

C

) (5)

keys. 2

Corrollary : For a P cipher applied to a message (M), there are

(|B| − |St|)!

(

|St|

C

)

unique keys.
Proof: Let the permutation matrix k be formed with size |B| × |B|.

There are then |B| choices for placement of the ‘1’ term in the first row
of the matrix. In the second row of the matrix, the ‘1’ cannot be placed
in the same column as that in the first row of the matrix. Therefore, the
number of choices remaining is |B| − 1. For the third row of the matrix, the
number of choices is similarly |B| − 2. Therefore, by induction, the number
of permutation matrices is

|k| = |B| × (|B| − 1) × (|B| − 2) × ...× (2) × (1) = |B|!

8



Now assume the plain text block being encoded contains |St| static bits.
As these bits make no contribution to the entropy in the cipher text, the
remaining encrypted block is equivalent to a permutation cipher applied to
a block of |B| − |St| bits. Thus the isomorphic key subspace contains |k′| =
(|B| − |St|)! keys.

Within the original plain text vector, all distributions of static bits are
isomorphic to a systematic vector x̄s containing |1′s| ‘1’ bits as its first entries
and |0′s| ‘0’ bits as its next entries. Denote this subvector of static bits (s̄) as
s̄ = {1...10...0}. For example, consider a non-ASCII encoding where |St| = 5
and |1′s| = 3 then s̄ = {11100} and C = min(|1′s|, |0′s|) = 2. The number
of isomorphic permutations of s̄ is found by rearranging the locations of the
‘0’ bits by exchanging their positions with the ‘1’ bits, e.g.

11100 11001 10011 01011
11010 10101 00111
10110 01101
01110

Note that
(

5
2

)

= 5!
3!2!

= 10, the number of isomorphic permutations just
illustrated. In general, the number of isomorphic permutations of s̄ plain

text vectors is
(|St|

C

)

.
Let ȳs be the isomorph cipher text obtained from the isomorph plain text

x̄ = (s̄ : x̄′). Then

ȳs = x̄

∣

∣

∣

∣

∣

I 0
0 k′

22

∣

∣

∣

∣

∣

where I is |St| × |St|, and k′
22 is (|B| − |St|) × (|B| − |St|). Then ȳs =

(s̄ : x̄′
sk

′
22

) where x̄′
s is the non-static subvector of x̄s. All possible cipher

texts are isomorphic to ȳs and the cardinality of this set is equal to the
product of the informative submappings x̄′k̄′

22 and the number of isomorphic
transformations on x̄s. Therefore, the number of unique keys is

k = (|B| − |St|)!

(

|St|

C

)

2

Corollary 2: For a P cipher applied to a message M , there are

ke =

|B|!−

(

|St|

C

)

(|B| − |St|)!

(

|St|

C

)

(|B| − St)!
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spurious, or “image,” keys.
Proof: The size of the total key space universe is |B|! By Theorem 1

within this universe the number of unique isomorph keys is (|B|−|St|)!

(

|St|

C

)

.

Therefore, the number of image keys is

|key space universe| − |isomorphic key subspaces| = |B|!− (|B| − |St|)!

(

|St|

C

)

.

Therefore the number of image keys is

ke =
|keyspace universe|

|isomorphic key subspaces|
− 1

=
|keyspace universe| − |isomorphic key subspaces|

|isomorphic key subspaces|

=

|B|! −

(

|St|

C

)

(|B| − |St|)!

(

|St|

C

)

(|B| − |St|)

2

For the message being decrypted the key space can be replaced by the
set of systematic isomorphs

|KM | = |systematic isomorphs| (6)

And
∀M → |KM | ≤ |Kc| (7)

Further, if the message is not as large as the alphabet (|M | < |A|), or if
the number of blocks (B) is less than the number of metacharacters that
can be constructed for the blocks (B < |A|n), then equivalent keys must
exist. Even if B > |A|n, redundancy reduces the number of unique blocks or
alphabetic characters seen, making it more likely that a message will have
equivalent keys. A message of the size shown in Table 1 is the minimum size
of a message that can avoid isomorphs since the file size must exceed the
alphabet size in order for each character to appear in the message. A much
larger message will typically be required due to language redundancy and
the effect is exacerbated with increasing key size.
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Key Size Block Size Alphabet Size
(bits) (bytes)

8 1 26
16 2 676
24 3 17576
32 4 456976
40 5 11881376
48 6 308915776
56 7 8031810176
64 8 209 × 109

72 9 5.43 × 1012

80 10 141 × 1012

Table 1: Keys for a Given Block Size

The key space for a message does not have to be identical to that of the
key space for the language and cipher in general. Each message must be
evaluated on an individual basis taking into account the cipher text seen in
the encrypted message. Messages of identical length may have vastly different
information content. As a result, one message may be subject to decryption
while another with similar size but different content may not reveal enough
information to be decrypted.

2.3 Language Combinations

Language is made up of patterns consisting of various repeated symbols
that Carlson et. al [5] call “metancharacters.” The metancharacters found in
messages are the alphabet of the metanlanguage. Cryptographers often argue
that any, and every, combination of metancharacters is possible in a message.
However, this proves to be untrue. While there are more potential charac-
ter combinations than the number metancharacters that can permuted, the
percentage of allowed metancharacters falls well below 0.003% of the total
possible permutations from the original message language by the time a 48
bit key is used. Limiting the possible mappings to allowed metancharacters
is followed by finding the isomorph reduction due to unused metancharacters
in the alphabet and message size.
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Ciphers have the property of being one-to-one and onto. If they did not,
decryption would not be possible. Disguising this property has led to the
development of algorithms that attempt to add changes to the encryption
by changing the key through calculable functions, such as XOR’ing the data
with an initialization vector (CBC [4]). Such a decryption effort only re-
quires knowing the function used and does not effect the key. Therefore, the
addition of such a randomization function can be ignored in the analysis of
identifying the correct systematic isomorph.

2.4 Redundancy and Language Patterns

Varying message content caused Shannon to bound the effect of patterns
as if they were independent random variables (IRVs) [6]. However, language
is not random. Language is full of patterns that depend a message’s content.
Such patterns manifest themselves in words [7] and in sentence structure.
Languages have formal rules [8], lexicons [9], and associations between word
context [10]. Rules, agreement for symbol meaning, and contextually related
words all indicate that patterns, and therefore redundancy, will be present
in a message.

Repetition, the key to decryption, commonly occurs in language. The
occurrence of repetition results in lower entropy, making it easier to find the
key. Each word makes a pattern in the language that can be exploited wher-
ever and whenever it appears. Shannon estimated that letter redundancy in
English is about 0.75 [6]. The presence of grammar and a lexicon further
limit language patterns. For example, English has approximately 54,000 dis-
tinct word families [11, 12]. However, 50 words comprise 43 - 50% of the
words normally used in written and spoken English [13], while only 1000
words cover 74 - 84% of the words used. Approximately 95% of commonly
used English is covered by a mere 3000 words [13] or about 3% of the total
words found in English. Similar lists and measures are available for French
[14], Spanish [15], Dutch [16], and Chinese [17], demonstrating the constrict-
ing effect for a variety of natural language groups (see Table 3). While the
exact number of words itself varies, the numbers for each language remains
similar.

Languages have characteristic frequencies of letters and words [4, 18].
Evaluating the cipher text of messages for redundant metancharacters has
long been used in decryption. Since most languages only require 3,000 - 4,000
words to make up 95% of the language [13, 14, 15, 16, 17] with its constituent
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patterns and word combinations most metancharacters in the alphabet will
be variations of those patterns. Zipf postulated that the more frequently a
word appears the shorter the length of the word [19]. This further restricts
the constituent symbols in blocks. Those chunks will make up the majority
of blocks appearing in the encrypted message. For each redundant block in
a message, the number of blocks that must be seen in the message to be seen
for total alphabet coverage is increased by one. The number of unique words
(wu) in a sufficiently long message (ml) will be bounded by

wu ≤ 3000 + .05(ml) (8)

For shorter messages, it is likely that wu << 3000 words, greatly restrict-
ing the isomorphs making up the the key space. Word size in English
is approximately 5.1 characters per word, limiting the average number of
metancharacters in the language [18]. The exact number of words needed for
coverage will also vary based on the subject matter used in corpus collection.

2.5 Complexity of Isomorph Reduction vs. Brute Force

The brute force attack [4, 20] is known to be of complexity

O(n) =
C

2
|K| (9)

Isomorph reduction reduces the key space to |s| before any heuristic algo-
rithms are applied. The complexity of isomorph reduction then becomes

O(n) =
C

2
|s| (10)

Isomorphs can vary between 1 ≤ |s| ≤ |K|, depending on the content of
the message and the cipher used for encryption. Comparing the complexity
of a brute force attack using isomorph reduction to a brute force attack yields
a reduction of complexity (Υr) of

Υr =
|s|

|K|
(11)

In all cases 0 < Υ ≤ 1 because |s| ≤ |K|. In most languages the number
of allowable combinations of letters is far below the number of possible letter
combinations, ensuring that for block ciphers there is a significant difference
between |s| and |K|. Smaller messages and messages with more repetition
will have fewer systematic isomorphs and a smaller key space after isomorph
reduction.
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2.6 Rainbow Tables

A method commonly used to speed brute force attacks is the rainbow table
[21]. Rainbow tables can be used to trade memory for speed in discovering the
key to a hash table or cipher. Strings of encryptions are assembled starting
with high probability combinations of letters (m-grams or blocks) and en-
crypting them with possible keys, to attempt to find which keys are possible.
Searching the strings results is a fast way to check for encryption mappings
without having to encrypt each block with every key. Pre-computing the
mappings means that the table can be reused without having to continually
expend the effort of calculation.

Rainbow tables can greatly speed an attack, cutting the time needed to
determine whether or not a key is correct. When used in conjunction with
the key space reduction methods of metancharacter and isomorph reduction,
rainbow keys further can speed the time to decryption.

Other purely heuristic algorithms may be available to reduce decryption
complexity. When employed, with key space reduction, they disprove the
assumption that modern ciphers cannot be solved in useful time. Such as-
sumptions are meant to demonstrate futility in even attempting decryption
of messages obscured with modern ciphers. This assumption is shown to be
false in the following example.

3 Example

To illustrate the isomorphic key space reduction, assume that a message
submitted for decryption is an English language plain text message, where
|M | = 1000 characters, |B| = 6 bytes (48 bits), and |T | = 120 unique char-
acters are found in the message.

A block of 6 bytes results in

|A||B| = 266 = 308, 915, 776 (12)

possible combinations of plain text to cipher text mappings. For a 6 byte
block, the number of allowed 6-grams, the six block alphabet (|A

6,English|),
is

|A
6,English| = 92, 674 (13)

meta6characters. With 120 unique meta6characters, a total of

(|A
6,English| − |T | = (92, 674 − 120)! = 92, 524! (14)
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possible isomorphic keys exist. For a 48 bit key, there are

2|B|∗8 = 248 = 2.82 × 1014 (15)

possible mappings for each meta6character. Since the number of possible
keys is lower than the full number of combinations, the number of possible
keys can be examined more quickly than the number of blocks. Therefore, a
comparison of efficiency will involve the keys for the block rather than total
blocks. The possible number of mappings is reduced significantly and the
time required to test is similarly reduced (92524! << 2.81 × 1014!). This
figure represents the upper bound of mappings for a brute force attack on
the encryption. The effect is a much smaller key space to check, enabling
decryption even of highly complicated ciphers. This analysis demonstrates
that complicated obscuring does not necessarily mean effective obscuring. A
second example, one that can be easily verified, involves single letter char-
acters and a language with an alphabet that consists of the characters a, e,
i, s, and t. A monoalphabetic substitution ciper is used to encrypt plain
text to cipher text. That is, A 7→ A. The cipher text message received is
“ststii,” consisting of only 3 of the characters in the alphabet - s, t, and i.
Each mapping is represented by a vector represented by:

a 7→ ka e 7→ ke ...t 7→ kt or kakekikskt (16)

Let x represent a “don’t care” in the mapping, ie. it does not matter what
other unique mapping is use for that portion of the key. Then, in this case,
only 60 keys of the possible 120 keys (5!) are unique. Those keys (isomorphs)
are

xxaei xxeis xxist xxtae
xxaes xxeit xxita xxtai
xxaet xxesa xxite xxtas
xxaie xxesi xxits xxtea
xxais xxest xxsae xxtei
xxait xxeta xxsai xxtes
xxase xxeti xxsat xxtia
xxasi xxets xxsea xxtie
xxast xxiae xxsei xxtis
xxate xxias xxset xxtsa
xxati xxiat xxsia xxtse
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xxats xxiea xxsie xxtsi
xxeai xxies xxsit
xxeas xxiet xxsta
xxeat xxisa xxste
xxeia xxise xxsti

On the average, only 30 of these isomorphs need to be attempted using a
brute force attack in order to find the correct key.

Heuristics typically used in the decryption process include block fre-
quency, words, sentences, grammar rules, and the context of the message.
Each of these properties reduces the entropy of the message and can be used
to eliminate possible metancharacter mappings. Once all of the heuristic
information is applied and mappings are reduced, brute force tests are be-
gun. The effect is a much smaller key space to check, enabling decryption
even of highly complicated ciphers. The results of the analysis show that
complicated obscuring does not necessarily mean effective obscuring.

4 Polymorphism as a Countermeasure

Shannon based his analysis of cipher strength on the plain text language of
a message, the cipher, and key selected for use with that cipher [22]. However,
there is evidence that supports the assertion that the analysis should actually
be done on the message that is being transmitted and encrypted [3] and the
cipher. Messages encode the language characteristics but allow for a finer
determination of uncertainty than is available for an average message.

The amount of information required to break an average message is known
as the “unicity distance” (n) [22]. Once that number of symbols has been
exceeded there is enough data to decrypt the message. In practice, the unicity
distance does not reveal enough information to break most codes. Practically,
most cipher text breaks require from 50 to 300 times the unicity distance [3].
Therefore, a message that is in the range of

1 ≤ x < 50n (17)

characters is safe because not enough information is available, on the average,
to effect decryption. The closer that x is to 1, the more safe the message.
Assume that a message (M) is broken into parts, called blocks (bi) such that
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the message is composed of each Bi that are concatenated (‖) together, then
the message is

M =‖n
i=1

Bi (18)

If each block is considered as a separate message and encrypted with a dif-
ferent cipher and/or key, then each block must be separately decrypted as if
they are are different messages. The encryption is similar to the One Time
Pad (OTP) [4] applied to the blocks. OTPs are known to be the only math-
ematically perfectly secure (unbreakable) cipher, so long as the method to
select keys is random [23]. Each block, if kept well below the unicity dis-
tance, is impossible to solve because of the lack of information and acts like
a symbol in a new language. The changes, known as a “polymorphic key
progression algorithm,” or PKPA, emulate an OTP without having the asso-
ciated overhead. Because the blocks are larger than letters in an alphabet the
key changes are infrequent enough that it is very difficult to gather enough
data to break a function that selects the next key and/or cipher, making key
progression functions feasible without compromising security.

Blocks used in a PKPA do not have to be of uniform size. It is better
that the length of the blocks are not uniform but rather that they are sized
using some heuristic measure. One of the best measures is local entropy
[22, 24]. Local entropy measures the entropy, or uncertainty, in part of a
message. If the entropy falls too low, then there is enough information in the
block for decryption. The block for which the entropy is calculated is then
capped below that length and the next block is constructed and examined.
Isomorphs are not a problem because the formulas presented in Theorem 1
and its corollaries are applied to calculate the entropy. Language patterns
and redundancy are also factored in via the entropy calculations. PKPAs
that employ entropy based message decomposition do not suffer from the
limitations of reduced key space due to isomorphs and language patterns.

5 Conclusion

Modern encryption systems are broken because the key space typically ends
up being much smaller than predicted. The goal of decryption is to recover
the original message, not to recover the exact key that created the encryption.
If every possible block (metancharacter) is found in a message key space
would be an effective measure of cipher strength. However, most messages are
not long enough and their content contains previously unrecognized linguistic
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repetition gives clues about the key. Equivalent keys (or isomorphs) exist for
many messages and using any of these keys will decrypt the message. Thus
only one of the keys in the set need be considered.

The key space can be further reduced using other techniques. The first
of note is the existence of forbidden letter combinations are found in the lan-
guage. Eliminating blocks which never occur in practice (forbidden metancharacters)
quickly eliminates possible mappings in the key space. Redundancy in a lan-
guage also plays a role in reducing the number of possible combinations.
Commonly used words also tend to be small, resulting in variations of blocks
based on those words. For meta6characters the number of allowed combina-
tions in English is only 0.003% of all possible symbol combinations [3].

If multiple decryptions are done on different messages with the same key,
then yet more of the key can be revealed by intersecting the isomorph sets to
distill both sets into a single smaller set. Once known, these mappings can
also be eliminated from the solution space mappings for the other substitu-
tions, again reducing the possible remaining key space. A situation in which
the key does not change exposes the message to an even smaller key space
with known mappings from other decryption efforts.

Each of these techniques arises from easily measurable features of the mes-
sage. The cipher determines the maximum key space size, but the message
determines how much reduction will result from applying each technique.
By using the characteristics of the language, a new reduced key space can be
constructed. The size of the key space can be easily calculated to compare
the effort needed to run a brute force decryption.

Future work into key space reduction should include the collection of word
and m-gram coverage for all natural languages. Variations and combinations
based on the word structure of languages should also be collected, correlated,
and disseminated to help establish patterns in those languages. Further work
needs to be done to answer the question of how significant metancharacters
are as n is increased above n = 2.

Preventing the cryptographer from collecting enough information to use
language statistics to help decrypt the message will ensure that only a brute
force attack will be effective. An effective way to combat key space reduction
is to change key space often. A polymorphic key progression based on a
strong pseudo-random number generator will also help to keep messages safe.
Analysis of any encryption system must also take the message into account.
Security is a function of the message, language, cipher system, and key. Only
by using information theory, Shannon theory, and heuristics can the full effect
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of repetition, rules, grammar, and lexicon on encryption be evaluated and
steps taken to further protect the information. A PKPA with the message
divided using local entropy calculations is one example of how a cipher system
can defeat isomorph reduction. At the present time, a PKPA is the only
system known to be effective in dealing with isomorphic reduction and the
related attacks.

While modern ciphers make use of a much larger key space than earlier
ciphers, key space is not the only factor in securely transmitting and storing
data. New techniques must be developed and used to minimize the impact
of heuristic and statistical algorithms in decryption. Based on information
theory, these techniques will probably center around polymorphic key pro-
gressions and entropy calculations to ensure that accumulated repetition and
a sufficiently large corpus is unavailable to the attacking cryptographer. Un-
til those methods are identified and regularly used, key spaces will routinely
be narrowed based on message content. Messages will continue to be broken
and their content revealed to attackers.
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m No. Forbidden No. Allowed Total No. m-grams % Forbidden

1 0 26 26 0.0000%
2 15 661 676 2.2189%
3 6261 11315 17576 35.6224%
4 347292 109684 456976 75.9979%
5 11251945 629431 11881376 94.7024%
6 306789115 2126661 308915776 99.3116%

Table 2: m-gram Numbers for English

Language Words for Coverage

English 3000
French 3680
Spanish 3000
Dutch 4000
Chinese 6000
Russian 7000

Table 3: 95% Coverage for Various Languages
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