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Abstract

Set Theoretic Estimation (STE) has been known and applied to various problems since

1969. Traditionally, STE has been used to solve vector problems in a Hilbert space using a

distance metric to create a volume in that space. Given this type of space structure,

Optimal Bounding Ellipsoid (OBE) algorithms are typically used to simplify STE estimate

processing; however, OBEs are not bounded to the original estimate volume defined by the

STE problem. At times the OBE algorithm includes spurious estimates in the new volume

that may incorrectly expand the solution set. In contrast to prior implementations of STE,

the algorithms used in this dissertation are based in topological space. Errors may still be

present in the selected property sets, but these sets are used only as a priori information

that are static and does not expand (change). Therefore, by choosing a topological space

the problems associated with OBEs are avoided.

For the first time, STE has been applied to decryption and STEs effectiveness is

demonstrated. The problem of diffusion across byte boundaries is address by assuming that

a block of symbols (meta-s-characters) are encrypted in that block. Language patterns are

not obscured in meta-s-characters because of the constraint on the fixed block size.

Furthermore, it is shown that all block ciphers are block substitution ciphers. Since all

block ciphers are substitution ciphers, a single attack is effective against substitution,

permutation, and block ciphers composed of combinations of substitution and permutation

ciphers. The BCBB algorithm that decrypts block substitution ciphers is introduced and

the results of its application are presented.

Property sets designed to complement (how do they complement each other) each

other are presented for the decryption problem. Further, it is then shown that that the

property sets contain the properties of the Asymptotic Equipartion Property (AEP). Via

the AEP, it is shown that Information Theory comes under the umbrella of STE.
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Chapter 1

Problem Statement and Literature

Survey

1.0.1 Current State of the Art

1.0.1.1 Cryptography

Cryptography and cryptanalysis are about obscuring and revealing the information

contained in a message. Recovering the message without knowing the original key is the

objective of the cryptanalyst while keeping data obscured is the objective of the

cryptographer. Both facets of the science are of interest in this study, with stronger

emphasis placed on revealing obscured information. Although an encrypted message may

seem to be a collection of chaos, decryption of the message is possible. By employing

statistical and heuristic knowledge about a language efficiently, even small messages can be

decrypted. Identifying and organizing information for efficient use is central to the

decryption effort. A method that has not been applied before this effort is Set Membership

Theory (SMT). By organizing information into sets, it should be possible to operate on the

encrypted message using the assembled sets to aid in decryption even if the key is unknown

1
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from the onset.

Modern ideas about cryptanalysis can be traced to ideas codified in the late 19th

century. Auguste Kerckhoffs was a 19th century French military officer who was interested

in the military uses of cryptography. In 1883, Kerckhoffs published an article, meant to be

used as a guide for military ciphers used in the field, that gave six characteristics of strong

ciphers. Until Kerckhoffs [1] stated these principles of security for ciphers, ‘security by

obscurity’ was considered a vital part of cryptosystem design. With his published

principles, Kerckhoffs changed the focus of cryptanalysis from security by obscurity to

peer-reviewed trap door algorithms with large key spaces which are computationally

infeasible to break. Because of Kerckhoffs’ work, mathematical and numerical methods

became much more important in cryptography. The six principles presented by Kerckhoffs

in his seminal paper are as follows:

1. The cipher must be practically, if not mathematically, indecipherable;

2. The cipher method is assumed to be known by the enemy (no security by obscurity),

so that the message may fall into the enemy’s hands and is not immediately

decipherable. Unless the key is known, the message will remain secret;

3. The key must be accessible without written notes and changeable at the will of the

users;

4. The cipher must be applicable to telegraphic (electronic) media;

5. The cipher method must be portable; and

6. The cipher must be easy to use, not requiring excessive training or the application of

many rules.



3

The advent of using electronic computers to implement and break ciphers followed

Kerckhoffs’ fourth rule, but altered the definition of practically indecipherable, memorable,

portable, and easy to use.

1.0.2 Shannon Theory

Just over twenty years after Kerckhoffs article was published, Claude Elwood Shannon was

born in Petoskey, Michigan. Shannon was destined to become a major contributor in Logic

Design, Cryptography, and Communications Theory. In 1938, Shannon wrote his

influential Master’s Degree Thesis, entitled, “A Symbolic Analysis of Relay and Switching

Circuits” [2], that applied Boolean Logic [3] to relays and switches, paving the way for a

mathematical basis of modern Logic Design Theory. During the late 1930’s, Shannon

worked for Vannever Bush on the forerunner of the analog computer. Shannon earned his

PhD from MIT in 1940, with an early mathematical treatment of the principles of

Mendelian genetics [4]. By the end of World War II, Shannon created a classified report on

cryptosystems, which was used as the basis for his later work on secrecy systems. After

cryptography, Shannon concentrated on communications systems, where he established the

basics of Information Theory.

The mathematical foundations that allowed Shannon to introduce Information

Theory [5] included work in set methodology, set theory, entropy and the definition of

topology. Important contributions to Shannon’s work came from various sources, working

independently on different problems, from the late 19th century through the first half of the

20th century. Near the beginning of the 20th century, Bertram Russell introduced a paradox

that later became known as “Russell’s Paradox,” [6] involving the possible composition of

power sets and collections. Russell’s Paradox sets limits on the composition of a

Topological Space that can be used in Set Theoretic Estimation. Based on Hartley’s
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equation [7], the amount of uncertainty, or “surprise,” in the data encountered in a set of

symbols is given by entropy. Entropy relates the probability distribution function (pdf) for

a set with probability of encountering an element xi, given as p(xi), to uncertainty.

Hartley’s equation is

H(x) = −p(xi)
n
∑

i=0

log2[p(xi)]. (1.1)

Entropy is maximized when the probability of seeing any member of a set is equal, that is

H(X) is largest when ∀xi ∈ X

p(xi) =
1

|X| .

Set Theory [8] was introduced in the 1880’s. Cantor put forth the framework that

later allowed mathematicians to explore and systematize problem requirements. In the

early-to-mid 20th century, there was an effort to define the definition of problem spaces

mathematically. This study, known as Topology [9], is a branch of geometry that deals

with the connectivity of a problem and attempts to operate on the common elements of a

problem in terms of the objects represented in the space. The shape of the object is not as

important as the characteristics of the object, which cannot be altered by stretching or

distortion. Requirements for a space that has a set X in it include:

1. The empty set, ∅, and X are contained in the space;

2. Given any two sets, xi and xj in the topological space, xi ∪ xj is also contained in the

topological space; and

3. Given any two sets, xi and xj in the topological space, xi ∩ xj is also contained in the

topological space.

Using the proper space in which the characteristics of interest remain constant
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allows operation on the essential and common basis of interest. For Set Theoretic

Estimation (STE) problems, the spaces where common attributes are exploited are Hilbert

Space [10] and Topological Space [9, 11].

Hilbert Spaces [10, 12] are closed vector spaces and metric spaces in n-dimensions,

denoted by Ξn, which is characterized by the following properties:

1. Distance between two points - The distance between any two points a and b in Ξn,

given by 〈a, b〉, is constant for any two points. That is

〈a, b〉 = 〈b, a〉 (1.2)

2. Identity - for the points a and b in Ξn

〈a, b〉 = 0 iff b = a (1.3)

3. Vector distance - for any three distinct points a, b, and c in Ξn

〈a, c〉 ≤ 〈a, b〉 + 〈b, c〉 (1.4)

4. Closure - if a sequence of vectors approaches a limit, then the limit is also contained

in the space. An example of a Hilbert Space is the three-dimensional space in which

we live.

A general Topological Space [9, 11] is a space that satisfies the first three conditions

listed above with respect to a set (X) in the topological space. There is no requirement for

vector distance or metric distance to be valid in the space. Distance metrics are functions

that have the first three properties noted for Hilbert Spaces and specify how 〈a, b〉 is

calculated.
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A topological space is dimensionless and may be populated by sets. Let the

topological space be populated by the power set of a set. Each possible subset of the

original set is contained in the space, and the union of each subset is also contained in the

same space. The intersection of any set is also contained in the power set and, therefore, in

the same topological space. A convenient way to visualize a topological space is to use a

Venn Diagram to represent subsets of interest in the space. The universe represented by

the Venn Diagram is the power set. Topological spaces have practical application in both

Shannon Theory and Information Theory for the decryption of ciphers.

Shannon introduced his analysis of communications in “A Mathematical Theory of

Communication” [13] in 1948. The paper established the foundations of Information

Theory. Shortly after “A Mathematical Theory of Communication” appeared, Shannon

addressed the subject of ciphers in “A Communication Theory of Secrecy” [5] and showed

how Information Theory could also be applied to cryptography. Shannon had previously

worked in the field of cryptography during World War II and applied his mathematical

rigor to the subject, analyzing how statistics could be applied to describe and operate on

ciphers. In “A Communication Theory of Secrecy,” Shannon introduced important

information theoretic measures of ciphers that included redundancy and unicity distance.

The redundancy of a language is the tendency for characters in a language to be

repeated. It can be calculated using the equation

Rλ = 1 − H(x)

Hmax

. (1.5)

Redundancy relates repetition to the entropy of the message. Approximating the

redundancy in the English language was the subject of Shannon’s 1951 paper [14],

“Prediction and Entropy of Printed English.” Shannon’s approach to measuring

redundancy was to treat redundancy as an independent random variable (IRV) and
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measure the number of guesses a practitioner of the language took to guess the next letter

in a message. Shannon found that practitioners were more likely to correctly guess the next

letter when substantial portions of a word or sentence were revealed. More uncertainty was

encountered at the beginning of words and sentences. Shannon set the redundancy for

English at REnglish = .75.

Redundancy of symbols in language infers that the symbols in the alphabet of a

language are not uniformly-distributed independent variables. Collecting examples of

language from a corpus of literature in that language can provide statistics for that

language. If the corpus is large enough, the Law of Large Numbers [15] indicates the

statistics will be applicable for instances of data similar to the corpora. Information used

to decrypt ciphers has traditionally come from a variety of statistics. A useful language

statistic that Shannon demonstrated for decryption in his work, “Communication Theory

of Secrecy,” is that of m-grams. An m-gram is a collection of letters where the m-gram is a

compound symbol < x0, x1, .., xm−1 > contained in the plaintext message and xi ∈ A of the

language. Shannon made use of the property that not all m-grams are found in a language

and that, given combinations of ciphertext symbols, some keys may be eliminated from

consideration in decryption.

Morton [16] builds on the idea of statistics in literature in his book, “Literary

Detection.” He shows that there are more than 35 sources of statistics that can be

employed to identify an author. The same statistics can be used to assist decryption.

Statistics form the basis for the property sets [12] utilized in Set Theoretic Estimation.

The unicity distance (n) provides a measure of how many symbols, on the average,

are required to eliminate all spurious keys for decryption of a message. Unicity distance is

based on the size of the key space (|K|) in a language (λ), an alphabet (A) of size |A|, and

the redundancy (R) of the language. Unicity distance, measured in symbols, is given by
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the equation:

n =
log(|K|)

Rλlog(|A|) . (1.6)

For a particular cipher in a language, the unicity distance is constant. For different ciphers

encrypting messages in the same language, the difference in unicity distance depends solely

on the key space. Different unicity distances imply that key space can be used to compare

ciphers and says that, in general, larger key spaces will result in stronger ciphers. The

unicity distance provides a way to compare the security of a cipher as well as predict the

minimum message size needed for complete cipher decryption.

Shannon [5] also introduced the concept of mixing cipher types. Ciphers can employ

both confusion and diffusion. Confusion comes from the substitution of one symbol for

another; diffusion results from the spreading of information across more than one symbol.

Shannon reported that certain ciphers increase the overall security when applied as a series

of cryptographic functions. The preferred order of applying the ciphers is:

F = LSLSLT, (1.7)

where L represents a linear cipher, S represents a substitution cipher, and T represents a

transposition cipher. Modern block ciphers employ mixes to increase their security and

hide language statistics.

Throughout history, many ciphers have been used to obscure information

transmitted between parties. An excellent summary of the basic cipher types is found,

along with their analysis, in Schneier’s “Applied Cryptography” [17]. Ciphers may appear

to be unreadable but can be mathematically easy to solve. Single encryption function

ciphers have now been replaced by product and cascading ciphers [18]. Maurer, et al.

analyzed the security of product and cascade ciphers, concluding that a cascade cipher was
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only as strong as the weakest cipher in the chain and that a product cipher was at least as

strong as the first cipher applied in the encryption process. Maurer, et al, concluded that

for a product cipher the encryption is at least as strong as that of the strongest cipher used

in the encryption process.

An extension of the product cipher is the block cipher [17]. Block ciphers operate on

multiple symbols simultaneously and are designed to implement both diffusion and

confusion. Diffusion spreads information across the block with the goal of disguising the

language characteristics of the plaintext. Substitution is the arbitrary mapping from the

alphabet of the plaintext language to the ciphertext alphabet. Mappings may be arbitrary

and do not have to be calculable from some regular function (F (xi)). At least one

substitution function is included in the block cipher, denoted by ‘S’ in the formula for F . A

popular form of the block cipher employs a “Feistel Round” [19] implementation (See

Figure 1.1). A ‘round’ is a group of functions that is performed on data for encryption.

Each round is a step in the total encryption process. Feistel created a modular system that

uses a single key and various ciphers in a single round. The input block is divided into two

sub-blocks, the Left (L) and Right (R) sub-blocks. The R sub-block is encrypted using an

exclusive OR (XOR,⊕) cipher

EXOR,k(B) = B ⊕ k (1.8)

with the key and then undergoes the application of additional substitution, permutation,

XOR, and other functions before undergoing a rotation equal to half of the block size. The

number and types of functions vary from cipher to cipher but the basic architecture of the

round does not vary. It is generally accepted that sixteen rounds are sufficient for good

data mixing [17]. In addition to the sixteen rounds, a permutation normally precedes the

first Feistel Round and follows the final Feistel Round. Some Feistel Round ciphers
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implement more than 80 ciphers during the encryption process of a single block of the

message. Feistel Round ciphers are widely used. Reasons for their popularity are that they

use the same key for encryption and decryption [17], and can be efficiently implemented in

both hardware and software, and are thought to be among the most secure available for

use. Feistel Round ciphers are extensively studied for weakness by cryptographers. Weak

keys for Feistel Round ciphers have been identified for attacks, as have various chosen

plaintext attacks. The most effective attacks on a Feistel Round block cipher are the Linear

[20] and Differential [21] Attacks, both examples of heuristic chosen plaintext attacks.

Linear cryptanalysis attempts to find an approximation to the action of a cipher.

That is, the Linear Attack tries to approximate the substitution for key blocks of input and

then generalize that substitution for the entire cipher. While the attack is mathematically

possible, it requires vast amounts of chosen plaintext to be successful. The Linear Attack

was inspired by Biham, et al’s Differential Attack.

Differential cryptanalysis uses chosen plaintext to try and uncover statistical

patterns revealed by applying the selected plaintext. The differences between the

ciphertext produced for each of the differential plaintexts are analyzed with the internal

structure of the cipher in mind. High probability differences are identified and traced

through the the predefined substitution box (S-box) structure to reconstruct the key.

Though an effective attack against many ciphers, most ciphers are now designed with

resistance to the Differential Attack in mind.

On the average, both the Differential and Linear Attacks have similar effectiveness,

measured in the number of chosen plaintext blocks that must be processed and compared,

on the average. Presenting and evaluating a single block takes much more than a single

instruction. The complexity of the solution is typically of an order larger than the number

of blocks processed. Goldreich [22] suggested that the complexity of a decryption solution

was a better computational measure of security than the more commonly used key space.
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Key space comparisons give a mathematical comparison that does not translate well into

computational feasibility. Computational security depends on the computational feasibility

of a function and Goldreich argues that the measure is more representative of real security.

Computational efficiency requires organization and application of data to a problem.

A methodology that takes advantage of the structure and nature of a problem, as well as

the known data relating to the problem, is required. During the late 1960’s, two

researchers were attempting to characterize the behavior of “fast moving” and “evasive”

targets for the US Navy. Within months of each other, Witsenhausen [23] and Schweppe

[24] independently published papers that proposed a new approach to solving vector

problems. Witsenhausen and Schweppe proposed taking the total possible solution space

and reducing it to eliminate those solutions that were not possible.

Early research building on Witsenhausen and Schweppe focused on solving

vector-based problems [25] and estimating the present state of linear dynamic systems.

Other researchers discovered that this technique, now known as Set Theoretic Estimation

(STE), could be used to characterize the parameters of problems [26, 27, 28, 29, 30] or

model problems [29, 31]. In order to use STE, the problems must have “bounded error”

and be resolvable to definite sets. Problems are expressed in a Hilbert space using a

distance metric to order the estimates inside the space.

Bounded error refers to the characterization of accumulated error (ρ) in the solution

of a problem. If the error in estimating the membership in a set can be guaranteed to be

below some limit (lim(ρ)) throughout the solution of the problem then:

ε ≤ lim(ρ) (1.9)

Bounding the error ensures that the amount of error introduced into a problem is both

known and can be accounted for in the solution. In a volume based STE solution the
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bounded error allows for the introduction of spurious solutions in order to simplify

calculations during the solution process. Spurious solutions are eliminated during further

processing, but the addition of errors slows the algorithm execution and can adversely

effect execution time. Ideally, the bound on error would be no error added during the

simplification process.

Property sets, or sets made of estimates that display a certain property, are applied

to input values and matched to the set of estimates. Only those estimates that exhibit the

property are kept in a solution set. The solution set is the volume remaining from the

intersection of the previous solutions set and the property set. Mathematically, expressing

the remaining volume becomes more difficult as succeeding property sets are applied. The

volume of the remaining set may be bounded by a geometric figure, known as a “bounding

ellipsoid,” [32, 33, 34]. The solution set is then defined as the estimates contained by the

volume of the bounding ellipsoid. To make it easier to process the remaining set of

estimates for the possible solution, an “optimal bounding ellipsoid” (OBE) [35, 36, 37] is

applied, which guarantees that the solution’s estimate is contained in the ellipsoid. Some

error is accepted in order to ease calculation. The question of the fitness of the OBE is

open because while “optimal” is desired, optimal is sometimes unnecessary [38] and difficult

to calculate. Deller, et al. [39] presented a unifying theory for OBE problems, called the

UOBE, in 1994. The UOBE shows how to trade off interpretability and convergence for

use in STE applications. After finding the OBE, the next iteration in applying property

sets begins. Some methods of OBE use the least squares method [36, 40], while other

methods make assumptions about bounding [37, 41] to set the optimization parameters.

All of the methods assume that the problem is being solved in a Hilbert space.

Although it is used in a number of applications, STE remains relatively obscure as a

methodology, and work in the field is not widely shared. Combettes [12] summarized the

state of STE in the early 1990’s, showing that STE is applicable to a wide variety of
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problems [42, 43, 44], and not just those in vector and parameter estimation problems.

McCarthy and Wells [45] demonstrated that SMT and STE techniques can be applied to

communications and digital design problems.

STE, as commonly implemented, suffers from the constraints of the space,

requirements for a distance metric, and the overhead incurred by OBE. A substantial effort

is also expended in geometrical calculations mapping the problem into volumes in the

space. Ideally, STE could be used without having to map the sets into a Hilbert space and

bounding would come without a penalty.

Ciphers, which act like noise on communications channels, make it natural to ask

the question: Is STE more effective for organizing and employing a priori information

about a language than present decryption algorithms and techniques?

In an attempt to answer that question, this dissertation makes the following

contributions:

• Applies STE to Cryptography - STE has been used in a variety of applications [12].

Until this dissertation work, STE has never before been applied to Cryptography.

• Applies STE in a Topological Space - STE has traditionally been used in a Hilbert or

Metric [46] space. The use of a Topological space eliminates the need for a distance

metric and simplifies the implementation of STE decryption.

• Uses Language Statistics as Property Sets - Language statistics function well as

property sets, as demonstrated by experimental results for this dissertation.

• Employs Local Entropy and Unicity Distance to Direct Attacks - Entropy and unicity

distance are typically used to characterize a cipher, given a specific language.

Calculating entropy and unicity distance on a portion of a message can yield

information on what part of a message to attack.
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• Reduces Ciphers for Analysis - Analysis of a cipher can be accomplished by

converting a cipher into another type of cipher. For instance, under some

circumstances a Permutation (P) cipher can be replaced by a Substitution (S) cipher.

Properties of ciphers, such as idempotence [47], can be applied to simplify decryption.

• Reduces Feistel Rounds - Using cipher reduction techniques, it can be shown that

some Feistel Round ciphers can be simplified for decryption.

• Evaluates Entropy and Unicity Distance to Messages - Messages are instantiations of

a language. Applying local entropy and unicity distance to the message allows the

cryptanalyst to decide what messages may be decrypted and how much information

is needed for the decryption.

• Identifies and Isolates Static and Dynamic Bits in P Ciphers - A technique to isolate

the role of bits in a P cipher leads to techniques to reduce the amount of effort

required to decrypt the message in the P cipher.

• Identifies Block Boundaries in Ciphers - Using the identification of static and

dynamic bits in a P cipher allows the cryptanalyst to quickly identify block

boundaries and block size in a P block cipher.

• Applies a Chosen Plaintext Attack to Block Ciphers - This dissertation presents a

simple chosen plaintext attack for block ciphers, one that employs language statistics.

The attack demonstrates that PSP type block ciphers are S ciphers.

• Uses Meta Symbols to Counter Diffusion in Block Ciphers - Diffusion is often cited as

a way to spread information to disguise language statistics. By selecting characters in

a new language that are the size of the block employed by the cipher, it is possible to

defeat the diffusion of information by keeping it in the same symbol.
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• Establishes STE as a Branch of Information Theory - To date, Information Theory

and STE have been separate. This dissertation links STE to Information Theory,

implying that Information Theory techniques are valid in STE.

• Establishes Applications Between the AEP and STE - The AEP is shown to hold for

STE.
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Figure 1.1: Feistel Round
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Chapter 2

Set Theoretic Estimates and Property

Sets

2.1 Overview

Set Theoretic Estimation (STE) is not commonly used as a problem solving

methodology since not all problems are well suited for it. However, it is ideal for the use of

problems with bounded errors and that are analyzed with respect to solutions that need to

demonstrate a certain set of properties. In STE, an algorithm is designed to help

differentiate between inputs that show the desired property and inputs that do not. The

property set may be deterministic in membership or the set may be determined

probabilistically.

While STE is very effective, the method relies on the geometric manipulation of a

solution set projected as a volume in vector space. Distance metrics strongly influence how

easily a problem is solved. The distance metric gives a weighting function to the property

that it expresses and makes manipulation of the solution set based on that property more

mathematically convenient. Given the metric selected, the application of repeated property

17
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sets to the ordered solution estimates can result in partial solution sets whose volume is

difficult to describe and manipulate mathematically. To respond to the problem of working

with irregular solution set shape, it is common to bound the volume with an ellipsoid

[36, 42]. Error may be introduced in the bounding process by including previously

eliminated estimates inside the ellipsoid, but the ease of manipulating the set is thought to

offset the “small” amount of error that results from such bounding. Minimizing that error

is a goal of research on Optimal Bounding Ellipsoids (OBEs) [37] and is further discussed

in section 2.2.3. A priori information, information known previous to the implementation

of STE through input data or world knowledge, also influences the quickness/accuracy of

the problem solutions. Without a priori knowledge of the input data and the behavior of

all property sets, the choice of which metric will yield optimal estimate ordering and results

is often impossible to predict. The more a priori knowledge given, the easier it is to choose

an appropriate distance metric.

In some cases, the added error and the calculation of OBEs can be avoided by

changing the space in which STE is applied. By employing a topological space populated by

the power set of the solution set (Pow(S)), the distance metric and OBE calculations can

be avoided altogether. No error is added to the solution set because no bounding occurs.

One significant contribution of the study presented in this dissertation is to show

that STE is a constituent of the Asymptotic Equipartition Property (AEP) [48]. This

makes STE a branch of information theory. Unification of STE and information theory is

significant because this unification further indicates that STE can be applied to problems

that are currently solved by using clasical information theory methodology. Combettes [12]

cited an extensive list of other STE applications that included digital filtering

[49, 50, 51, 52, 53, 54], mathematics [55, 56], statistics [57], antenna theory [58, 59, 60, 61],

acoustics [62, 63, 64, 65], signal processing [66, 67, 68, 69, 70, 71, 72, 73, 74], information

theory [75], medical imaging [76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], signal recovery
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[88, 89, 90], spectral estimation [91], linear equation solving [92], speech processing[93],

optics [94, 95, 96, 97, 98, 99, 100], biology [101, 102], image recovery [103, 104, 105, 106],

control systems [107, 108], cloud trajectories [109], electrical engineering [110],

communications [111], neural networks [112, 113, 114], remote sensing [115], magnetics

[45, 116], and geography [117]. Recently, much of the work in STE and OBE has been in

signal processing [39] and voice processing [93]. Even though STE has been used in many

fields [25, 26, 27, 28, 35, 36, 37, 40, 42, 44, 93, 118, 119, 120, 121, 122, 49, 50, 51, 52, 53,

54, 55, 56, 57, 58, 59, 60, 123, 61, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81,

82, 83, 84, 85, 86, 92, 88, 89, 90, 62, 63, 64, 65, 91, 94, 95, 96, 97, 98, 99, 100, 101, 102, 75,

103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117], it has never before

been applied to cryptography. Since information theory is the basis for modern decryption,

STE would be a natural choice of methodology to apply to current decryption efforts. This

dissertation explores the use of STE as a method for decryption – a new and important

contribution.

2.2 Review of Present Theory

Set Theoretic Estimation (STE) traces its roots to two seminal papers, written in 1968 by

Witsenhausen [23] and Schweppe [24], and published almost simultaneously. Both papers

were concerned with military research into what was termed “evasive” targets.

Witsenhausen and Schweppe understood that the actual path taken by the target must

come from the set constructed of all of the possible paths from the initial location to the

end location. The goal was to reduce the number of possible paths to a single path taken

by the target. To do this, they viewed each vector as a state in a progression of states. Any

information known about the target or path at the time the solution was attempted, called

a priori [48] information, was used to eliminate possible paths in the solution set.
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The theory as originally outlined by Witsenhausen and Schweppe can be more

generally explained as follows. Typical STE problems are vector based and either arrive at

an answer derived from a function of vectors or estimate the coefficients of such a function.

However, STE problems must meet several other basic conditions. The requirements for an

STE application are:

1. The problem in question must have a deterministic f(x) and inverse f−1(x);

2. The problem must have bounded error for any input;

3. Each possible answer to the function must be computable; and

4. The problem must be expressible using different properties that differentiate between

groups of inputs, inferring set membership.

In his 1990 paper,“The Foundations of Set Theoretic Estimation,” Patrick

Combettes [12] gave an excellent overview of the basics of STE operation. Since STE deals

primarily with logic expression and set theory many of the symbols normally associated

with both fields are used. The notation of both first order predicate logic (FOPL) [124] and

standard set operations apply. Of particular applicability is the intersection (∩) operation.

STE is governed by set membership rules in which solutions are described by

intersections of non-empty sets. Each possible solution, called an estimate [12], is a

member of the overall solution set. The estimates in the solution set may potentially be

separated into many different sets.

The rules describing what characteristics the correct solution must possess are

encoded into property sets. Since the outcome of a problem is a reflection of the input to

the process, property sets contain the estimates that can be shown to cause the desired

output, given the characteristic the property set encodes. Estimates can be parsed into sets

by rules that define the desired characteristics of the property sets. These rules are
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expressed as assertions in STE. An assertion (A) takes the set of possible inputs and gives

a set of resulting outputs, or solutions, for the operation (O), as specified in the rule. For a

particular input (x), this output is expressed as

Ox = A(x). (2.1)

Taking the inverse of the assertion gives the members of the property set that are used in

STE operations. Intersecting the solution set with the property sets produces a new

solution set. Repeated application of the STE algorithm yields a final set of acceptable

answers to the problem.

Obviously, different inputs can result in different sets of estimates. Solutions,

however, must display the same properties. A correctly described solution to a problem

will be composed of one or more property sets that have already been parsed to distinguish

between correct and incorrect solutions. A problem may have a set of equally acceptable

solutions or it may have a single (∃!) solution estimate.

A simplified example of STE application to the field of cryptography is when a key

applied to an input of ciphertext either results in a decryption in English or it does not.

Based on the result of the decryption, the key is either placed into the set of keys that

decrypt successfully (where the decryption is understandable in English) or fail to decrypt

(the decryption is not understandable in English). The composition of a property set (Φi)

is constructed by testing the input or by pre-computing the set membership. All of the

keys that are successful are said to show the “property” of Φi. Any set that divides

estimates by properties is known as a “property set” where

∀x ∈ M →






xi ∈ Φj if Φj(xi) = true

xi /∈ Φj if Φj(xi) = false
(2.2)
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STE operations most often take place in a Hilbert space of m dimensions. The space

is denoted as Ξm, where m depends on the requirements of the problem. Each estimate in

Ξm is arranged according to a distance metric (d < a, b >). Bounding the estimates in the

space results in a volume that can be manipulated and altered. As estimates are eliminated

from consideration, the volume is adjusted to exclude the rejected estimates. The resulting

volumes can become cumbersome to manipulate, so the volume is again bounded by using

another ellipsoid that is easier to manipulate. However, Optimal Bounding Ellipsoids

(OBEs) are useful only if the effort required to calculate and apply the OBE is less than the

effort to manipulate the space by simplifying the problem and avoiding the OBE entirely.

Witsenhausen and Schweppe felt that employing a Hilbert space in STE was more

natural because the problems they were interested in were vector based. Using Hilbert

spaces is also advantageous in that the solution process can be easily visualized. Thus

Hilbert spaces have become the standard setting for STE problems.

Both Witsenhausen and Schweppe noted that STE could deal with errors, or

“noise,” in a problem. Schweppe [24] showed that, while noise could obscure the solution, if

the noise was bounded STE was still able to return the correct answer. Another suggestion

Schweppe made was to use a bounding ellipsoid in which the correct state is guaranteed to

be found. Schweppe explained that the introduction of the bounding ellipsoid may have

introduced errors if the solution space was smaller than the bounding ellipsoid.

Witsenhausen suggested iterative bounding ellipsoids be chosen to minimize the total error

during processing [23]. Early attempts at selecting bounding ellipsoids introduced enough

error to indicate that further research was needed to optimize the method. Additional

study was required to find techniques to ensure that bounding ellipsoids came as close as

possible to the actual volume of the solution set while still minimizing introduced error.
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Following the lead of Witsenhausen and Schweppe, others soon found applications

for the STE technique. In fact, STE has seen successful application in diverse fields

ranging from speech, signal processing, medical imaging, and image projection problems

[119, 120, 121, 122]. One field that has greatly benefited from STE is that of class

identification. STE has been applied not only to system analysis, but also to regular

language analysis, communications [125], discernibility, and connectedness problems.

While STE can be very effective, the methodology as usually implemented suffers

from several shortcomings. These shortcomings include:

1. STE efficiency is highly dependent on the distance metric used. Choosing a

suboptimal distance metric can slow operation and increase the error introduced in

each application of property sets;

2. While conceptualizing estimates in a volume aids in solving the problem, the

mathematics resulting from operating on the volume can be complex and overly

difficult;

3. Optimal Bounding Ellipsoid (OBE) algorithms and calculating new volume limits

decreases computational efficiency and adds processing time;

4. It is undesirable to add any errors (if avoidable). Repeatedly eliminating the same

wrong answer adds additional effort and slows the solution process;

5. Vector spaces are not appropriate for all problems. STE, as usually practiced, is not

easily applicable outside of non-vector spaces; and

6. No effective general method of selecting property sets currently exists.

This work will attempt to improve on reducing error introduced during the

application of property sets, introduces the use of topological spaces in STE, and shows

that OBE algorithms are unnecessary in decryption applications.
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2.2.1 Property Sets

Since Hilbert space property sets operate on volumes clustered by means of a

distance metric in a space, and since the nature of the space can radically affect the ease of

problem solving, the choice of the space itself becomes important. Topology [9] is the study

of underlying commonalities and similarities in shapes. Solutions to a problem can be said

to exhibit certain characteristics or “properties.” Since solutions to problems exhibit

certain characteristics, problems represented as shapes can be solved in topological spaces

that emphasize the desired characteristics of these problems. Properties represent a partial

solution to the problem solving for one characteristic of the solution. Not all spurious

solutions can be eliminated by a particular property; however, by considering all unique

properties one at a time in the solution space, it is possible to identify a set of properties

that, when applied, will eliminate all spurious solutions from the solution set.

The set of all possible estimates for all possible applied inputs demonstrating a

desired property is called a “property set,” and is denoted by Φn. For an assertion (A), the

property set will contain all estimates (x) such that

f(x) → A. (2.3)

In the case of encryption, the set constrains the keys (ki) for the input values (x) in a set

(M), as expressed by the following equation

∀x ∈ M : Oki
(x) ∈ A. (2.4)

Multiple rules for distinguishing between different estimates can be asserted,

resulting in multiple property sets in a particular solution space. For each rule asserted,

there is a Φ, which represents the solutions, and a Φ−1, which consists of all other points in
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the solution space. The units and values of members of Φ are determined by the nature of

the application. For instance, a communications application may be expressed in terms of

voltages; so Φ would be a range of voltages. In addition, there may be many distinct

subsets of Φ that are defined by the input to a given rule. The total volume (V ) of the

solution in the space is defined by

V =
n
⋃

i=1

Φi. (2.5)

In this equation, i represents each of the property sets for the problem.

Working in Ξm, each set (Φi) is considered in turn. Each Φi contains only those

elements that follow the rule that the assertion describes. Since Ξm contains all possible

solutions, if a solution exists then the solution (P ) must be inside the solution space and

must be a member of the property set for each assertion. That is, if ∃P then

P ∈ Ξm (2.6)

and

∀Φi → P ∈ Φi. (2.7)

Further, if P is in each of the solution sets, then it must also be true that

P ∈
n
⋂

i=1

Φi. (2.8)

If a solution is found in the intersection of the sets, the intersection is said to be

“consistent.” If it is not, the intersection is said to be “inconsistent.” If the resulting

solution has exactly one answer, ∃!, the solution is said to be “ideal.”
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As stated previously, no systematic general method is known to identify and select

property sets. Describing the characteristics of a solution and experimenting with the effect

of each set (known as mensuration), in combination with other identified property sets is

the standard technique heuristic used at this time.

2.2.2 Topology of STE

Topology is important in set methodology. STE can be performed in a variety of

spaces, depending on the needs of the problem. Many of the problems solved with STE are

represented by vectors that require a vector space, such as a Hilbert space, for

representation. A shape evaluated as an intersecting volume of possible solution estimates

is formed. As previously mentioned, intersected volumes often form irregular shapes that

are difficult to describe and operate on geometrically. Calculations can be simplified by

approximating the irregular volume with a geometrically regular shape that entirely

bounds the volume of interest. This is done in a topological space.

All topological spaces are applied to a space (X) and a set (T ). For a space to be

considered a topological space, it is necessary that:

1. T ∈ X;

2. ∅ ∈ X;

3. ∀X, Y ⊆ T → X ∪ Y ⊆ T ; and

4. ∀X, Y ⊆ T → X ∩ Y ⊆ T .

The simplest of all topological spaces follow these rules. It is important to note that for

any space made up of the power set of X, called pow(X), there is closure over the ∪ and ∩

operators. Thus, pow(X) is a topological space.

Other specialized topological spaces exist. They include:
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1. T0 space, also known as a “Kolmogorov space.” The T0 space is a topological space in

which every pair of points is topologically distinguishable. That is,

∀x, y ∈ X → ∃A|x ∈ A, y 6∈ A or y ∈ A, x 6∈ A;

2. T1 space, also known as a “Frechet space.” A T1 space is a topological space in which

any two points (x, y ∈ T ) can be separated;

3. T2 space, also known as a “Hausdorff space.” The Hausdorff space is a topological

space that is separated into “neighborhoods.” Neighborhoods are sets such that

∀x, y|x 6= y, ∃U, V : x ∈ U, y ∈ V → U ∩ V = ∅;

4. T3 space, is both a Hausdorff space and a regular space (where ∀C ⊂ X and a point

p /∈ C have non-overlapping neighborhoods). That is, given any closed set F , and

∀x 6∈ F, x ∈ U, and F ⊂ V → U ∩ V = ∅;

5. T3 1

2

space, also known as a “Tychonoff space.” Tychonoff spaces are function

separable. That is, for y ∈ F, x 6∈ F , ∃f , a continuous function mapping to a number

line such that f(x) = 0 and ∀y ∈ F, f(y) = 1;

6. R0 space, also known as a “Symmetric space.” Symmetric space is similar to T1

space, but all points are topologically distinct;

7. Metric space. A metric space is a space with a global distance metric, g(x, y) such

that ∀x, y ∈ X, the following rules apply:

1. g(x, y) = 0 iff x = y;

2. g(x, y) = g(y, x); and

3. g(x, y) + g(y, z) ≥ g(x, z);

8. Vector space. A vector space is a space closed under vector addition and scaler

multiplication; and
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9. Hilbert space. A Hilbert space is a vector space with an inner product such that

|f | =
√

< f, f > turns the space into a complete metric space. A Euclidian space is

an example of a specialized Hilbert space.

Bounding volumes in vector spaces (such as Hilbert space) requires the use of

special geometric shapes. Bounding a volume in n-dimensions is normally done using either

a hypertope or a bounding ellipsoid. Hypertopes have the advantage of more closely

approximating the actual shape of the estimate volume but they suffer from complex

representation due to the many small faces forming the hypertope. Bounding ellipsoids are

easier to modify and represent, and are therefore more often used to track and describe the

estimate volume. However, approximating an actual volume may result in the inclusion of

estimates that should not be in the solution set. Therefore, keeping the volume as small as

possible while still bounding the estimate volume is desirable.

2.2.3 Optimal Bounding Ellipsoids

All measurements suffer from some amount of uncertainty and introduced error [30].

Errors can be introduced from several possible sources, but the most common cause of

error introduction is from sensor limitation when recoding data and the truncation of finite

precision. A more difficult problem in reducing error is characterizing the probability

density function (pdf) associated with a noise source. In some cases, the assumption of

bounded error is warranted; but in many cases, it is impossible to know if the assumption

is correct or even to verify if it is a posteriori [30]. However, in some cases it is possible to

give absolute bounds on induced error. Knowing the bounds of the error gives rise to the

use of multiple sets of solutions rather than a single (∃!) solution. It is interesting to note

that for some problems the introduction of the error term can actually result in a more

robust solution[28].
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Since Witsenhausen [23] and Schweppe’s [24] introduction of STE to vector-based

problems, substantial interest in the methodology has centered on error estimation. In a

Hilbert space, estimates may be eliminated in non-continuous locations in the volume due

to the distance metric used. The function that describes the boundaries of the volume can

become very difficult to work with. In response to that problem, early research focused on

bounding the estimates in the space by either a hypercube [126], hypertope [126], or an

ellipsoid [25]. Bounding using either a hypercube, a hypertope, or an ellipsoid redefines the

estimate space as a continuous volume for each iteration of the solution process. Bounding

the estimate set and operating on the volume can introduce error by including estimates

that were previously eliminated or by adding estimates outside the original volume.

However, bounded error is necessary for convergence to the solution set.

Walter and Piet-Lahanier [30] authored an excellent survey of set method

implementations of bounding ellipsoids and hypercube-based models for both linear

parameter (LP) and non-linear parameter problems. Basic to all LP problems was the

intersection of volumes bounded by hyperplanes in time data sequences.

Ellipsoids allow for a compact way to describe, or bound, a volume. An ellipsoid

with its center at θc, and having its orientation and size given by the matrix M , is

described by

E(θc, M) = {θ|[θ − θc]
TM [θt − θc] ≤ 1}. (2.9)

If θc is not unique, the ellipsoid is said to be “degenerate.” A degenerate ellipsoid, bounded

by two parallel hyper-planes, results in a family of bounding ellipsoids that can be

constructed around the region of interest. If Rk is the region of interest, resulting from the

latest measurement, and Ek−1 is the bounding ellipsoid, resulting from the first k − 1

measurements, then E(α) is the family of ellipsoids whose results contain Rk. The goal is

to find an α∗ that minimizes the volume of E(α∗). Unfortunately, algorithms for
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calculating the minimal bounding ellipsoid, also called the Optimal Bounding Ellipsoid

(OBE), have greater than linear computational cost [27, 30, 127].

Another approach to simplify the description of an irregular volume of estimates is

Orthotopic [30] Outer Bounding, which bounds a polygon with a rectangular framework.

Bounds are identified by finding the values in n-dimensions for θi,max and θi,min ∀i. While

the bounds are easier to calculate, the orientation of the polygon can lead to the inclusion

of large areas that do not originally belong in the solution intersection. Variations of this

method include calculating individual faces of a multi-dimensional object and the exact

description of each of the vertices of that object [30]. However, neither method is as

popular with set methodology practitioners as the bounding ellipsoid method.

Another set of researchers, Bertsekas and Rhodes [25], formalized the application of

STE to linear time invariant problems or problems of the form

ẋ = Ax(t) + Bu(t) (2.10)

measured by

y(t) = Cx(t) + v(t). (2.11)

In these equations, x(t) ∈ <m is the state of the system at time (t); u(t) ∈ <m is the

input at time t; and v(t) ∈ <m (often referred to as ω(t)) is the noise encountered at time

(t). A, B, and C are matrices of appropriate size and dimension for the problem. Bertsekas

and Rhodes assumed that a problem in the form they presented could be expressed as a

function of the input and noise, with the noise corrupting the final measurement of the

input function. Further, the authors assumed that there was an ordering in a metric space

for each solution to the vector that could be operated on within a bounding ellipsoid.

In general, hyperplanes can be constrained around the estimate volume, but
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hyperplanes may not always be parallel to each other. To respond to the problem of

dealing with non-parallel hyperplanes, Clement and Gentil [127] introduced an algorithm

called FHC1. This algorithm is recursive and takes multiple passes to converge to the

solution set. While the bounding ellipsoid is not guaranteed to be optimal, it can be

constructed more easily. The non-parallel hyperplane generally intersects the structure in

more than one place. A new hyperplane, one tangential to the intersected volume, replaces

the old hyperplane. The result of the action is two bounding ellipsoids that are intersected

and bounded, resulting in a single, smaller volume of estimates.

Fogel [27] researched bounding ellipsoids in an environment where noise was

constrained by energy. Addressing the same type of problem as Betsekas and Rhodes,

Fogel attempted to identify the parameters of a linear time invariant problem. This was

required since in the use of an iterative algorithm, an unknown error may cause

convergence problems.

There are two approaches to parameter determination: deterministic and

probabilistic. Normally, the output of the function is considered deterministically and the

error component is treated probabilistically. The object of bounding is to create a set (θ)

that bounds the parameter vector (Sp) such that Sp ∈ Θ. The center of the bounding

ellipsoid is considered to be the “true” Sp. The state estimator closely resembles the

Kalman-Bucy filter which is known to be an optimal state estimator for Gaussian white

noise [28]. Gaussian white noise is a random process (ż(t)) that has a zero mean and a

variance of σ2 = ∞ [128], such that for all t 6= s, ż(t) is independent of ż(s) and

E(
∫

f(t)ż(t)dt)2 =
∫

f(t)2dt. (2.12)

Thus, ż(t) is the analog version of an independent sequence of random variables. Measured



32

data has the form

yk = θT xk + ωk. (2.13)

In this equation, θT is a vector of the unspecified problem parameters; xk is a vector

composed of the previous inputs and outputs measured, and ωk is the noise. This equation

is an example of a parameter estimation problem common to ARMA, or “autoregressive

moving average,” models. ARMA [30] is a function used to predict future values of a time

series based on a past history of observed values. Also referred to as the “Box-Jenkins”

model, the ARMA model consists of two parts: an autoregression and a moving average.

The general form of this function is

xt = C +
p
∑

i=1

φixt−1 + εt. (2.14)

In application, the constant term (C) is often omitted because it does not affect the moving

average or regression. The term εt, the error term, represents a bounded unknown error.

Fogel showed that the noise is constrained, as demonstrated by the equation

k
∑

i=1

ω2
k ≤ F (k). (2.15)

In this equation, F (k) is monotonically increasing and places a bound on ω2
k. Fogel also

demonstrated that for ωi, composed of Gaussian white noise, yk converged [27]. It is,

therefore, possible to make a bounding ellipsoid, with bounding noise, using this algorithm.

The iterative process employed by this algorithm results in parameter estimates that are

more likely to fit into an estimable boundary as a result of using the bounded error.

Following his original paper, Fogel continued his bounding ellipsoid work in a paper

co-authored with Yih-fang Huang. Fogel and Huang [28] explored Multiple Input Multiple

Output (MIMO) systems. Previously, STE problems had been restricted to Single Input
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Single Output (SISO) problems. Thus STE was proven to be a useful technique for any

problem that had bounded error.

Sinha and Kwong [129] built on Fogel and Huang’s work and demonstrated that by

using a technique of mathematical decomposition, the extension of STE to MIMO systems

was possible. The paper focused on finding the optimal vector (θo
k) where

θo
k =

k
⋂

i=1

Si (2.16)

and

Si = {θ : ri(yi − θT xi)
2 ≤ 1; θ ∈ <n}. (2.17)

Fogel and Huang also implemented an easily calculable iterative algorithm to calculate θk+1

where

θk+1 = f [θk, yk+1, xk+1, rk+1] (2.18)

on the condition

Θk = [θ :
k
∑

i=1

qiri(yi − θTxi)
2 ≤

k
∑

i=1

qi; qi ≥ 0]. (2.19)

This process is known as the weighted least squares (WLS) method. The WLS

method was developed for use with a zero mean Guassian white noise ωi component. The

recursive algorithm converges under these assumptions and is a better bounded ellipsoid

algorithm than was originally presented by Schweppe [25] because of its dependence on a

priori observations.

Clement and Gentil [127] proposed a different model for limiting the volume of the

bounding ellipsoid based on Fogel and Huang’s work. Clement and Gentil’s model uses the

conditions listed in the WLS method, but additionally states that

A(z−1)xk = B(z−1)uk; (2.20)
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yk = xk + ηk; (2.21)

and

|ηk| ≤ ηm
k . (2.22)

In these equations, yk is the measured output at time (k); uk is the unknown true input at

time (k); and ηk is the bounded noise term at time (k). The terms A(z−1) and B(z−1) are

determined using the following equations

A(z−1) = 1 + a1z
−1 + a2z

−2 + ... + anz
−n; (2.23)

B(z−1) = b0 + b1z
−1 + b2z

−2 + ... + bnz
−n. (2.24)

In the equations above, ai and bi are autoregressive parameters.

The various methods used to deal with bounding ellipsoids showed similar enough

elements that Deller and Huang [35] were able to introduce a way to unify the various OBE

methods. Deller co-authored a number of papers with his students concerning OBE

[35, 36, 37, 39, 93], pursuing the mathematical basis by which such a theorem could be

established for use with signal and voice processing. The concept of “optimal” [38] should

be examined in the context of what is being optimized. Most OBE algorithms minimize

the volume of the bounding ellipsoid in an attempt to reduce induced error. Deller and

Huang noted that most bounded error problems are too complex for signal processing.

They also noted that most general problems rely on the Combettes Abstract Model [12]

and are not amenable to real-time applications.

As mentioned before, an alternative to OBEs uses hyperplane bounding to simplify

the “optimal” constraint and eliminates the difficult task of minimizing a volume. At time
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(t), the bounded error conditions imply two hyperplanes at

H+
1 = [θ|yt = θT

t + γt] (2.25)

and

H−
1 = [θ|yt = θT

t − γt], (2.26)

where the error, (ω(t∗)), is expressed/present under the condition

ωt∗ ≤ γt∀t ≤ N. (2.27)

The aim of hyperplanes is to construct a sequence of bounding ellipsoids that, at each t,

enclose the polytope in some way. However, not all applications of property sets will cause

a reduction to the set of all possible solutions.

In a later paper, Joachim, Deller, and Nayari estimated that less than 10% of the

applied intersections will result in a reduction of the estimate volume [37]. OBE algorithms

can be sped up substantially by eliminating unnecessary and computationally expensive

operations. It is, therefore, desirable for a “selective updating” to occur. In selective

updating, the updating procedure is followed only if a change in the bounded area is

detected. A change in the bounded area occurs when

Ht+1 = Pt ∩ Ht 6= Ht. (2.28)

While the process to detect a change can be costly, it is often advantageous because the

detection algorithm may be much less computationally intensive than calculating and

fitting the new bounding ellipsoid.

One such selective updating method was discussed by Rao [41], employing the
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Dasgupta-Huang (DH) OBE algorithm and using a “forgetting factor.” The forgetting

factor (1 − λ) is a function of the positive gain (λt) that can be used to constrict or enlarge

a bounding ellipsoid. If the bounding ellipsoid contains the intersection of E(t− 1) and a

property set (St) then

Et = {θ ∈ <n|(1 − λt)[θ − θ(t − 1)]T P−1(t − 1)[θ − θ(t − 1)]λt[y(t)− θTφ(t)]2

≤ (1 − λtσ
2(t − 1) + λtγ

2},

which can be simplified to

Et = {θ ∈ <n|[θ − θ(t)]TP−1(t)[θ − θ(t)] ≤ σ2(t)} (2.29)

where

P−1(t) = (1 − λtP
−1(t− 1) + λφ(t)φT (t), (2.30)

σ2(t) = (1 − λt)σ
2(t− 1) + λtγ

2

− λt(1 − λt)[y(t)− φT (t)θ(t − 1)]2

1 − λt + λtφT (t)P (t − 1)φ(t)
,

and

θ(t) = θ(t − 1) + λ(t)P (t)φ(t)[y(t)− φT (t)θ(t − 1)]. (2.31)

The value and range of λt has a profound effect on the size of the bounding ellipsoids. In

the DH OBE, the value of λt is chosen to minimize σ2, ∀t. While the gain decreases the

size of the OBE, it does not guarantee that the resulting OBE is optimized.

Since the goal is to determine when a change to the ellipsoid occurs, rather than
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when optimal bounding takes place, σ2 is still useful. Using the calculation for σ2, it is

possible to determine if the bounding ellipsoid should be changed. Taking the intersection

of the estimate volume and a property set may not yield a reduced estimate volume. If the

set is unchanged, no change in the OBE is required. That is, if

σ2(t + 1) + δ2(t) ≤ γ2 (2.32)

where

δ(t) = y(t)− φT (t)θ(t− 1), (2.33)

then λt = 0 and no update occurs. Otherwise, the update to the ellipsoid has a gain of

λt = min(α, ωt) (2.34)

where

ωt =







































α if δ2(t) = 0

1−β(t)
2

if G(t) = 1

1
1−G(t)

[1 −
√

G(t)
1+β(t)[G(t)−1]

] if 1 + β(t)[G(t)− 1] > 0

α if 1 + β(t)[G(t)− 1] ≤ 0.

(2.35)

The value α is the user-chosen upper bound on λt, such that 0 ≤ α ≤ 1. Additionally

G(t) = φT (t)P (t− 1)φ(t) (2.36)

and

β(t) =
γ2 − σ2(t − 1)

δ2(t)
. (2.37)

It has always been assumed that OBEs have a monotonically decreasing volume.
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However, some linear functions may have parameters that do not remain inside the

calculated bounding ellipsoid. Values that vary outside of the ellipsoid are said to “jump.”

Jumping may be the result of incorrectly selected parameters for the bounding process or

an input sequence that biases the ellipsoid. If the observed value jumps, there needs to be

a way to increase the size of the bounding ellipsoid to include the observed data.

Enlarging the ellipsoid is accomplished by using a “rescue” algorithm [41]. Rescue

algorithms do not increase the bounding ellipsoid to immediately re-include the point

observed to jump, but accomplish the rescue over a short discrete period of time. Large

discontinuities are handled very well by the combination of rescue algorithms and

forgetting factors. This gives rise to “relaxation” techniques that allow recovery from

unanticipated errors that cannot be characterized prior to observing data.

Deller and Huang proposed a unified OBE algorithm. For this algorithm, the initial

conditions are

θ0 = 0, (2.38)

k0 = 0, (2.39)

and

P0 = 10−4I. (2.40)

For optimal behavior, two positive weighting sequences {αi} and {βi} are chosen, according

to the particular OBE used. The ωt values are chosen either to maximize or minimize the

size of the ellipsoid at time (t). Selective updating is also employed. So, for each time

interval t = 0, 1, 2, ..., N , the following occurs:

1. Using the incoming data, (yt, xt), optimal values for αt and/or βt are found;
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2. If there is no optimal αt or βt, the data set is discarded; and

3. Ct = P−1
t , θt, and kt are updated using

Pt =
1

αt

[Pt−1 −
βtPt−1xtx

T
t Pt−1

αt + βtGt

] (2.41)

where

θt = θt−1 + βtPT xtεt; (2.42)

kt = αtkt−1 + βtγt −
αtβtε

2
t

αt + βtGt

; (2.43)

Gt is the scaler

Gt = xT
t Pt−1xt; (2.44)

and

εt = yt − θT
t−1xt. (2.45)

Steps one through three are repeated continually until the algorithm arrives at an answer.

The factors of αt and βt vary between the particular OBE algorithms and input

sequences that bias the ellipsoid. The αt and βt values for various algorithms are

summarized in Table 2.1.

Despite the value of OBE, hyperplane, and hypertope algorithms in STE, the cost

of analysis and design of these algorithms is high. Avoiding the computational cost of

regularly applying these algorithms is highly desirable. If the error resulting from
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smoothing the volume using OBE, hypercubes, and hypertopes can be eliminated,

execution time could be greatly reduced. The technique used in this dissertation does not

rely on volumes, making the use of smoothing techniques unnecessary, and thus presents

significant savings in terms of both computational time and costs. The technique

constitutes an original contribution of this research.

2.2.4 Information and Shannon Theory

Implementing an STE algorithm requires both the identification and selection of

property sets. Unfortunately, the selection of property sets remains more of an art than a

science, relying on the user’s intuition. Many of the property sets identified in this

dissertation are the same data sets used by Shannon in his 1949 paper on cryptography [5].

Shannon [5] demonstrated that enough information is contained in m-grams (groups

of m consecutive letters) to effect the solution of a Caesar cipher (a specialized type of

ssubstitution cipher). Substitution cipher decryption methods often use letter frequency

tables and m-grams to recover keys. Both approaches suggest that language statistics make

good property sets. Morton [16] expanded language statistics to incorporate words and

then sentence structure, providing another possible source for language property sets.

Language statistics are so important to the field of decryption that collections of such

statistics were published before World War II [130] and still exist in various university

collections [131]. Shannon and Morton later established a standard model where the author

gathers a custom set of statistics and then applies them to a decryption problem.

Shannon [5, 14] noted that every language contains redundancy. He further

established that redundancy can be quantified as

Rλ = 1 − H(x)

Hmax(x)
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and interpreted as the tendency of symbols in a language (λ) to be repeated. Patterns in

the language that are not removed prior to sending a coded message provide an

opportunity for attack [47]. Substitution ciphers have traditionally been attacked through

the employment of redundancy, expressed statistically by letter, m-gram, and word

frequencies [47].

Shannon also stated that the average amount of information required to distinguish

between spurious keys and the actual key is determined by

n =
log|K|

Rλlog|A|

where |K| is the keyspace size, |A| is the size of the alphabet in language λ, and Rλ is the

redundancy of language λ. The quantity n is known as the “unicity distance” for the

cipher in language λ.

In information theory the notation of |x| means ”the size of ‘x’”. Throughout the

remainder of this dissertation, this notation shall be used exclusively. In no instance is the

notation used to refer to the more commonly known absolute value function.

Shannon [5] used this information to decrypt a Caesar cipher [17, 47]. In Shannon’s

algorithm, the ciphertext is considered one m-gram at a time starting with a 2-gram. Then

the probability of the m-gram being correct is examined. Shannon was searching for the

m-gram whose probability, given the decryption key associated with the resulting plaintext,

was 1 (p(m-gram) = 1). If the probability of a particular decryption is 1, then all other

decryptions must have an equal probability of being 0. As such, any m-gram being

investigated as a possible plaintext that has a p(m-gram) = 0, is removed from further

consideration. Shannon made use of the fact that once a group of letters that cannot

appear sequentially together in the language for n letters, then ∀m > n, no m-gram

containing that n-gram will exist in the language.
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Though Shannon was able to prove that his technique was viable, his technique left

room for improvement. Shannon only used m-grams one letter at a time. Consequently,

information that could have been gained by repeatedly applying m-grams during analysis

of the ciphertext was lost. A more precise method of applying m-grams is to check for

m-grams that have a probability of 0 and then remove those keys from consideration.

Although Shannon only applied his technique specifically to a Caesar cipher, he did imply

that the same technique could be useful in the decryption of other ciphers.

Shannon’s technique was later modified to use larger sets of m-grams and increase

testing precision. In the 1970s, Peleg and Rosenfeld [132] made use of larger m-grams and

Bayesian [15] methods to demonstrate a break of substitution ciphers. In the approach

taken by Peleg and Rosenfeld, called “relaxation,” a message is broken down into 3-grams.

A possible key is selected and the message is decrypted using that key. The probability

that each 3-gram is correct, given the selected key, is then measured. Two letters in the

key are randomly selected and their roles in the key are exchanged. The probabilistic effect

to the key is again measured. If the probability that the message is correctly decrypted is

higher, the change to the key is accepted. Otherwise, two new letters are randomly

selected. In both cases, the process is repeated until the algorithm determines that the

decryption is correct.

Peleg and Rosenfeld indicated that relaxation as a technique had a difficult time

determining when to stop the decryption process. They further noted that the blank

spaces between words were left in place and given as blank spaces in the ciphertext. Under

these conditions, the relaxation technique results in a correct decryption about 80% of the

time and requires about 5,000 characters of ciphertext. The significance of their work is

that m-grams, in particular 3-grams, are useful as a language statistic for decryption by

unifying iterative algorithms with statistical analysis to create high probability answers.

About the same time that Peleg and Rosenfeld presented relaxation, another
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researcher explained the role of redundancy in language. Although Morton [16], was not

directly researching cryptography, his efforts had a great impact on it. Morton, a theologian

with formal training in statistics, published his findings in a book entitled, Literary

Detection, and called his work “stylometry.” Stylometry was developed as a method to

determine the actual authorship of disputed Old Testament texts. Morton began studying

the literary habits of authors and tried to apply statistical methods to “fingerprint” them.

During the investigation of such texts, Morton demonstrated that author styles do

exist. He was able to identify almost forty characteristics/properties relevant to personal

literary style. Properties of style ranged from the average size of a sentence (in words) to

the use of articles, such as “a,” “of,” and “the.” Of special interest were his conclusions

about word usage. Morton concluded that words which appear infrequently did not occur

enough to use in statistical analysis and were, therefore, not significant. He suggested

instead that words of smaller size gave better clues to authorship. Morton further

demonstrated that style still remains valid after translation. Thus, words and sentence

structures can be considered indicative of the correct content in the decryption of a literary

work.

Lucks [133] studied characteristic patterns in the English language with respect to

cryptograms. The combination of stylometry and the use of m-grams in words allowed

Lucks to demonstrate the strength of targeting the blank spaces between words. Once the

spaces between words were revealed, Lucks used a dictionary to attempt decryption. His

algorithm made use of word size and the pattern of letters found in a word. As letters were

uncovered, the dictionary searched for matching patterns, with known letter(s) in the right

position(s). Word and letter statistics were combined to decrypt simple messages. Of

particular interest was the discovery that more than half of the words commonly used in

written English can be compiled into a list of less than 150 words. This fact suggests that

redundancy and letter frequency are highly important to decryption.
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2.2.5 Unifying STE and Information Theory via the Asymptotic

Equipartition Property

It has long been thought that STE and information theory shared many similarities, but

the proof needed to unify the two had been noticeably lacking. If STE is a branch of

information theory, then it can be used in the field of cryptography. Using the Asymptotic

Equiparition Property (AEP), it is possible to prove that STE is indeed a branch of

information theory.

Prior to the presentation of this proof, several definitions are required. The

definition of terms used in this section are as follows:

Definition 2.1: Side Information

External knowledge of a problem is termed “side” information. Side information

includes language statistics, a priori information about the message source, and all data

known about the dependencies in a key space that have been derived during the decryption

process.

Side information is made up of two distinct types of information: the a priori

information which does not change and derived information, or information derived from

the encrypted message, which may change. Frequency of letters in a language, the number

of characters in the language, or the redundancy of the language are examples of a priori

side information. Derived information is obtained by applying the a priori side information

to the input message. For instance, data about the key of a substitution cipher may

disallow specific mappings of cipher text symbols to a particular plaintext letter, given the

intercepted message. More than one mapping may remain as possible key mappings. While

the correct mapping is still unknown, impossible mappings, identified by a priori side

information, need not be considered. The resulting data becomes derived side information.

Mathematically, let Sa denote a priori side information and Sd represent derived
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side information. The complete collection of side information is represented by the symbol

S in the following

S = Sa ∪ Sd.

In general,

S =
m
⋃

j=0

Sdj
(2.46)

where Sdj
is the side information derived in round j of the decryption process. Each

iteration derives new data about the key. Data concerning the key becomes part of the

derived side information that can be applied for the next iteration of decryption. Iterations

continue until either 1) no more information can be derived from the given input message

or 2) a readable plaintext message appears. In decryption, the derived side information is a

combination of the remaining keys in the key space that can be the correct decryption key

for the message. In this manner, an algorithm that eliminates all impossible keys until only

one remains, known as the “Last Man Standing Algorithm” [134], can be implemented in

side information.

Definition 2.2: Run

Mathematically, let ci, ci+1, . . . cn be a string (compound symbol), consisting of

characters in a message of size |M |. The string begins at position i in the message and

continues for a total of n − i + 1 characters where

0 ≤ i ≤ n ≤ |M |.

A run is the substring of the message (|M |), starting at ci and ending at cn.

Definition 2.3: Equivalent keys
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Two cipher keys, k1 and k2, are said to be equivalent, if for a message (M),

Dk1
(M) = Dk2

(M).

Keys need not be equivalent for all possible messages. For example, assume the message

(M) does not contain the symbols q, x, or z in its plaintext and is encrypted using a

substitution cipher. Any key that contains the same mappings for all symbols except q, x,

or z is equivalent to any message not including q, x, or z. Without those symbols in the

message, it is impossible to differentiate other possible keys from the correct key (ke).

To this point, it has been assumed that keys are totally accurate. But inaccurate

decryption can occur and the deviation from the set of correct equivalent keys can be

characterized.

Lemma 2.1: The error (e) is a measure of the number of keys that do not demonstrate the

encryption property Φi and is bounded.

Proof: For any key space (K), ke must reside in the key space for the encryption. There are

Ks ≤ |K| − 1 spurious keys, with Ks = |K| − 1 iff every key in K possesses the designated

property. If a property uniquely identifies ke, there are no spurious keys. The error must be

0 ≤ ε ≤ |K| − 1

keys for each Φi.

Lemma 2.2: Property sets are independent random variables with an intersection that is no

larger than the smallest property set.

Proof: Since ke must be a member of every Φi, any key that does not show every property
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cannot be a solution. Thus it is necessary that

ke ∈
n
⋂

i=1

Φi.

Unless a property set Φj ⊆ Φk, where j 6= k, the property sets are independent of each

other. If Φj ⊆ Φk, then the property set Φk is subsumed and replaced by Φj because

Φj ∩ Φk = Φj. Therefore, the property sets may be regarded as independent random

variables. Applying each property set to the input message results in a set of keys that are

valid for decryption given the message (M). As each additional property set is intersected

with the results from the other property sets, the resulting set of possible keys tends to

constrict. For example, ∀j, k,

|Φj ∩ Φk| ≤ |Φj|

then

if: Φj ⊆ Φk, then Φj ∩ Φk = Φj ;

if: Φj ⊇ Φk, then Φj ∩ Φk = Φk and |Φk| ≤ |Φj| ;

or if: Φj 6⊂ Φk and Φk 6⊂ Φj , then |Φj ∩ Φk| < ||Φj|, |Φk||

as neither property set is a subset of the other. 2

Theorem 2.3: Property sets are typical sets defined by the Asymptotic Equipartition

Property (AEP)

Proof: More than one key may show the property (P ). Each key that shows the property

(P ) is equally likely to be a solution for the decryption problem if no a priori side

information is available. Since each key (kj) is equally likely, the probability of any key in
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Φi being the actual encryption key (ke) is

p(kj = ke) =
1

|Φi|
.

The probability of a key that does not show the property (P ) of the encryption being in

the property set Φi is 0. By selecting a part of the message and checking for the property

(P ), the keys for an encryption can be separated into two sets: one that has the property

(P ) and one that does not. Using the terminology of the Asymptotic Equipartition

Property (AEP) [48], Φi is the typical set for the property (P ).

The probability of the intersection of independent random variables is given by the

product of the probabilities of each random variable [15]. If a key does not appear in one of

the property sets, then the probability of it appearing as a solution for the decryption also

goes to 0.

The probability of a key from the solution set appearing in the intersection of all of

the property sets is given by

p(Φ0, Φ1, Φ2, ..., Φn−1, Φn) =
m
∏

i=1

1

|Φi|
.

For each property set (Φi), the key tested will tend to one of two probabilities

p(Φ0, Φ1, Φ2, ..., Φn−1, Φn) =



























n
∏

i=1

1

|Φi|
if ∀i → ke ∈ Φi

0 otherwise

The set with non-zero probability is the typical set for the combined property sets. Each

member of the typical set has the same probability of being the key used for encryption.

For the message received, several keys may be equivalent and yield the same result in
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decryption. The error (ε) in a typical set consists of those equivalent keys (excluding the

original encryption key). This is the definition of the typical set (A(n)
ε ). Thus, STE [12]

follows the AEP [48]. 2

The unification of STE to information theory is a major contribution of this

dissertation.

2.2.6 Assembly and Use of Property Sets for Decryption

The use of STE for decryption demands the identification and implementation of

property sets. To date, there has been no systematic method used to identify what

property sets should be applied to a specific problem. The reason for this is that

identification of the property sets remains highly dependent on the experience and

expertise of the STE method designer and/or implementor. Property sets are selected

based on their ability to remove possible estimates from the set of possible solutions to the

identified problem. The ease of deciding the set membership of the estimates is another

factor in deciding which sets should be employed. Statistics are a good source for property

sets and are the deterministic version of a probability density function (pdf).

Shannon [5] discussed his approach to decrypting the substitution cipher with a

probabilistic method based on language statistics. His method involved looking at a

portion of the ciphertext and attempting to match the pattern in the ciphertext to various

plaintext decryptions. Using the probability of a particular decrypted plaintext, occurring

in English, the mapping was accepted if, for the ciphertext, < c0, c1, ..., cn >; for the

plaintext, < p0, p1, ..., pn >; and for key (ke)

p(Ek(< p0, p1, ..., pn >) =< c0, c1, ..., cn >) = 1.
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Keys are rejected iff

p(Ek(< p0, p1, ..., pn >) =< c0, c1, ..., cn >) = 0.

Shannon began with a group of m letters in a row, taken from a ciphertext, where

1 < m ≤ |M |. The grouping of letters, known as m-grams, has an associated probability,

drawn from a body (or “corpus”) of examples of proper language use. Each grouping of m

letters, starting with the first letter in the corpus (ignoring any non-alphabetic character)

is counted. The next m-gram is then formed by shifting the first letter in the m-gram one

alphabetic character to the right in the text. His method notes that if any m-gram cannot

occur (p(< p0, p1, ..., pn >) = 0) for some value of m, then no n-gram with n ≥ m containing

the m-gram is possible in the language. Thus, when p(m-gramct 7→ m-grampt) = 0, the key

that produced that m-gram in decryption can be removed from future consideration.

Definition 2.1: Forbidden m-gram

An m-gram that does not occur in the use of a particular language by a particular

user, or group of users, is said to be forbidden.

Definition 2.2: Allowed m-gram

An m-gram that is not forbidden for a user, or group of users, and is found at least

once in a corpus of communications is said to be allowed.

Shannon’s elimination of keys that show forbidden m-grams is done while searching

for the single m-gram, with p(m-gram) = 1, and is not the main thrust of the algorithm. It

is, however, close to the goal of STE, where all keys eliminate any following keys that

decrypt the ciphertext into a forbidden m-gram, in an attempt to key the only m-gram

with non-zero probability. This similarity indicates that m-grams are candidates for

property sets.

Although Shannon used the statistics for each m-gram only once, there are many



51

m-grams available for analysis. For example, for an m-gram of size i, applied to a message

of size |M |, there are

|M | − i + 1

m-grams. The total number of m-grams in the message, for a range of m-gram sizes from 2

to j, are nmg m-grams. The total number of m-grams in a message is given by

nmg =
|M |
∑

i=2

|M | − i + 1.

Single letters are not normally considered because there are no forbidden letters in the

alphabet. Larger lengths of m-grams become difficult to work with because the possible

number of m-grams for a particular m grows exponentially. For a given m in an alphabet

(A), consisting of |A| letters, there are |A|m possible m-grams. As the size of m increases,

the number of forbidden m-grams also increases (Table 2.2). However, the increase in the

number of forbidden m-grams quickly overcomes the number of allowed m-grams. The

difference is so dramatic that it is easier to store the number of allowed m-grams and

manipulate that data than to store the forbidden m-grams for use.

Each value for m is a different set of allowed/forbidden m-grams. The possible

number of sets that could be applied is given by |M | − 1. A difficulty in using sets of

allowed/forbidden m-grams is the possibility of biasing the data towards a particular

author. As stated earlier, all authors have a “style” [16] that distinguishes one writer from

another. An author’s style, if used as a set to describe general language use, can

inaccurately describe the general use of that language and cause erroneous results.

Empirical results indicate that style bias becomes a problem for m ≥ 8 [134].

Letter frequencies have long been used in the decryption of various ciphers [5, 12].
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Algorithm Name Year αt(λt) βt(λt) Optimizes Reason for Change

Fogel-Huang OBE 1982 1
kt−1

λt

αt
µvol

t or µtr
t Seminal

SM-WRLS 1985 1 λt µvol
t or µtr

t Relates OBE to RLS
Dual SM-WRLS 1992 λt 1 µvol

t or µtr
t Addresses Numerical

Stability
Suboptimal 1993 1 λt µvol

t or µtr
t Computational

SM-WRLS Efficiency

SM-SA 1993 Λt−1

(Λt−1+λt)
λt−1

(Λt−1+λt)
µvol

t or µtr
t Convergence of µvol

t

Λt ≡
∑t

τ=1 λτ

Dasgupta-Huang 1987 1 − λt λt kt Convergence of kt

OBE
Quasi OBE 1997 1 λt kt SM Filtering Relates

OBE and NLMS

MW QOBE 1997 {1}t+k2

τ=t−k1
{λt}t+k2

τ=t−k1
kt Optimizing Multiple

Weights

Table 2.1: UOBE Algorithm Factors

m No. Forbidden No. Allowed Total No. m-grams % Forbidden

1 0 26 26 0.0000%
2 15 661 676 2.2189%
3 6261 11315 17576 35.6224%
4 347292 109684 456976 75.9979%
5 11251945 629431 11881376 94.7024%
6 306789115 2126661 308915776 99.3116%

Table 2.2: m-gram Numbers for English
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However, letter frequencies are a probability-based measure of language and cannot easily

be applied to property sets. The statistical form of letter sequences is equal to the number

of times a particular letter appears in a substring (known as a “run”) of the message. The

number of letters appearing in the run are counted and analyzed. The maximum number

of times the letter appears over a large sample of runs will reflect the probability of the

letters appearing in future runs. If a letter appears in the corpus no more than n times,

then a key that maps ciphertext to plaintext, so that the letter appears > n times, may be

eliminated. No rule yet exists for selecting run length. However, for this dissertation, a

choice of the run length equal to the unicity distance was used as a starting point for

empirical testing. At least n characters will have to be seen, on the average, to successfully

complete a decryption with no prior knowledge of the key.

Identical letters appearing sequentially are another potential source of information

in a substitution cipher environment. Few letters appear two times in a row, such as “pp”;

and even fewer appear three times in a row. The patterns found in the ciphertext can then

be exploited, with forbidden multiple letters being removed from consideration as part of

the key.

The contents of property sets will not be identical from language to language.

Different languages often have different alphabets and even those languages using the same

alphabet have different letter frequencies and allowed/forbidden m-grams [134, 135].

However, while the exact content of the sets may differ, the algorithm to use them does

not. Note that the set architecture of the methodology allows for replacing sets for one

language with sets having a similar role in another language without having to alter the

algorithm. All that is required when processing the data is that data sets for the correct

language be used in the message. The algorithm used is an iterative algorithm that begins

with a message (M) as the input to the decryption process. At the end of the first

iteration, only the ciphertext message is available. In the second iterative round, any a
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priori side information available for M is applied. Successive iterations continue until there

is either no new derived information or there is a solution to the decryption. Each iteration

in the decryption process can be represented by its iteration number (r). The first

decryption iteration increases the knowledge about the decryption by supplying a message

(M). The derived side information begins as the empty set

S0 = ∅.

The result of adding the ciphertext message in the original round of information

provides information on the alphabet (A) of the ciphertext and results in

S1 = {A}.

The result of the first iteration of decryption is the application of a priori

information about the type of encryption used, the language of the message, language

statistics, and so forth. Side knowledge is increased so that

S2 = {{A}, {Ap1}, {Ap2}, ..., {Apn}}

where Apk represents the a priori information that can be applied to M . Possible keys for

each encryption comprise their own sets in Sr. No new information is derived when

Sr+1 = Sr.

New data derived from the iteration is added to side information by either inserting a new

set of data or expanding a set {Api} already in Sr.

When no new data may be directly derived from M and S, an attempt to derive
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new information may be made via a “guess.” Guesses assume that a piece of information is

correct and decryption proceeds under that assumption. The goal is to either arrive at an

“acceptable” solution or to create a contradiction between the assumption and possible

solutions. Assuming a piece of information with low probability is especially effective, as it

may lead to quick contradiction. Contradictions are added as new side information by

expanding the a priori set, which potentially leads to better derived information, and

ultimately a solution.

2.3 Chapter Summary and Contributions of This

Dissertation

In this chapter, STE has been introduced and its development as a methodology was

explored. The major interests currently surrounding OBEs and bounding hypertopes was

explained. Of particular note was the computational time and costs for optimal bounding

of STE problems. A basic overview of information theory was also discussed. STE was

proved to be a branch of information theory using the AEP. As mentioned previously, a

main contribution of this thesis is the assignment of STE to information theory which

explains the natural connection between STE and its use in the field of cryptography.

This dissertation also makes the following contributions with respect to STE:

1. Demonstrates that STE is a branch of information theory. This dissertation also

proves that STE follows the Asymptotic Equipartition Property. Therefore, that STE

is a branch of information theory;

2. Applies STE to decryption;

3. Applies STE in a simple topological space rather than a Hilbert, or metric, space.
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Populating a simple metric space with the power set of the solution allows operation

on pure sets;

4. Eliminates the OBE problem in STE. A set-based space does not require mapping

estimates to volumes nor require bounding, thus eliminating the calculations required

for bounding. In addition to simplifying the complexity of processing, no new errors

are introduced from the eliminated bounding process;

5. The elimination of the need for a distance metric. A set-based implementation does

not require a mapping function nor suffer from the problems of a metric that is not

well suited for selected property sets;

6. The identification of allowed and forbidden m-grams, along with the statistics of such

data sets in English. The identification and application of the specific property sets

in English are also new to this dissertation; and

7. The identification of a set of property sets that have been successfully used in the

decryption of substitution ciphers.
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Chapter 3

Developing the Corpus for Decryption

3.1 Overview

Shannons theory was developed during a time when computers were not available for

general research. Data was gathered by groups of people manually reviewing, collecting,

documenting, and analyzing data. Costs were extremely high and the time to complete a

single study limited the quality of information that laid the foundations of their analysis.

Given the advanced technology in todays computational systems, a reinvestigation of data

related to the redundancy of languages may be useful. M-grams have proven to be of use in

exploring decryption. To date only arbitrary m-grams have been employed. The use of

words and sentences have not been considered. Words are variable length m-grams and

sentences are composed of a varying number of words. Words limit the further combination

of subsequent m-grams or words. Sentences made up of words also limit the possible

combination of m-grams. Additionally, using semantical information embedded within

words and sentences, allows keys to be isolated more rapidly.

Any information known about the problem is encoded as sets in the solution space.

Each rule or constraint is represented by its own unique set. Data may be a member of

57
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more than one set, but must be in at least one set to be considered. Multiple rules can be

asserted, resulting in multiple “property” sets in the solution space. For each rule asserted

there is an Φn representing the solutions, and Φ−1 consisting of all other points in the

solution space.

Before use each identified property set must be gathered from a source that

represents the language of the message. The property sets then characterize the language

from which they are taken. This section describes the data sets used in the research for

this dissertation and how those sets were collected. These sets were later utilized for

decryption of various cipher types. The results yielded by application of the property sets

will be discussed in a later chapter.

3.2 The Corpus

Developing a solution depends on applying property sets that can gradually eliminate

possible solutions. Property sets based on the statistics of a language require characterizing

the language. However, language changes over time [136]. A representative sample of the

language was used to collect the necessary statistics to create property sets.

Comprehensive corpora representing English are not available. Those statistics that

are available, such as letter frequency, do not detail their sources [130]. Therefore, it was

necessary to assemble a corpora to collect statistics for this dissertation. Set collection

begins with texts known to be written in English. Samples of literature taken from the

Project Gutenburg [137] library in .txt format serve as the corpus for m-grams, as well as

the source for encryption. Texts were gathered to represent written English from the late

15th to early 21st centuries. Works chosen for the corpus come from both halves of each

century in order to reflect language drift over time. Works from different genre are included

to avoid lexicon bias. At least two works were selected from each author. Texts selected for
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the corpus are shown in Table 3.1. The corpus is composed of 41 texts and 294,838,109

characters. The entire collection process is automated. Dictionaries for the English

language are readily available in electronic format [138]. Sentence structure is taken from

Chomskys work and implemented as a basic syntactic parser [139].

3.3 Property Sets

Property sets describe the characteristics and patterns of a language. Beginning with the

most general characteristics of languages, each language must be a member of the natural

languages, be composed of an alphabet of symbols, and must have syntactic rules. But

these sets do not have to be expressly collected, since these general sets identified can be

subsumed. For instance, the natural language set used in characterizing the STE solution

to decryption begins with the a priori knowledge that the message is written in a natural

language. In this set of experiments, the language of the message was English. The English

language set is entirely contained in the natural language set. Therefore, the English

language set subsumes the natural language set and the set of natural languages can be

ignored. Similarly, the set of alphabetic characters and syntactic rules are subsumed by

m-gram sets. Therefore, these sets need not be collected.

Among the techniques that Shannon explored is the use of language regularity that

appear as word repetition and patterns. The premise is that these regularities can be

statistically characterized. Since the elemental analysis is done at the character level,

identifying word patterns results in letter patterns, which can then be measured and

described statistically. The chance of encountering a particular combination of letters is

based on their frequency in the language.

The redundancy in a particular language, RL, depends on the probability density

function for the language. Redundancy provides a clue to the possible role of the
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duplicated symbol or collection of symbols. With respect to letter probability, non-uniform

distribution of letters in the language can be exploited to correlate their occurrences to

symbols in the encrypted alphabet. Cryptographers have used this method for many years

in guessing keys to encrypted messages. Overall, the probabilities have proven very useful

for decryption. Some of these measures include letter and word frequency, word size, and

combinations of letters. Shannon empirically determined the redundancy of the English

language [14] and specified it as a lower limit. Further refinement of the redundancy has not

included restrictions placed on letter order by considering word and sentence constructs.

Letter redundancy can be measured either for part of the message or for the entire

message. The global redundancy has the advantage of more closely representing average

language use but may be inaccurate for small messages. Redundancy over a portion of the

message reflects word patterns and is better for smaller messages and message fragments.

This dissertation makes use of both sets. Global frequency figures were gathered by

reading each character from the corpus and keeping count of the individual characters read,

as well as the total number of characters read. Letter frequency is then calculated.

Information on letter frequency for portions of the texts, called “runs, were collected

for a run of r characters. For each of the texts in the corpus the first r characters were read

and the number of appearances for each letter was counted. At the conclusion of processing

the run, the pointer in the file was incremented and the next run was processed. Processing

continued as long as a run remained for processing. At the end of run processing, the

maximum count for each letter is saved. The maximum number of appearances in a run is

related to letter frequency and provides information on letter appearances. Letters that

appear quite frequently can be separated from those that appear only infrequently.

In his work on secrecy systems, Shannon uses the adjacency of letters called

m-grams for decryption [5]. M-grams are a run of m letters in a row that appear in a text

of length L. Because there are (L − m− 1) m-grams in a section of code being processed,
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and m-grams with 2 ≤ m ≤ L are possible, a great deal of information is available about a

ciphertext. Shannon uses m-grams as the basis for his decryption methodology for the shift

cipher, a subset of the substitution cipher. Starting at an arbitrary position in a

ciphertext, Shannon begins by analyzing the resulting text from decryptions using each of

the keys for the cipher. Shift ciphers are an easy case, because there are only 26 possible

keys, and are easy to illustrate for the same reason. The resulting plaintext from each key

is checked for the probability that it is a (the) key that produces a readable message.

Because some combinations of m-grams do not result in an understandable message, the

probability of one of the keys producing the correct message converges to 1. Other keys

will produce plaintext whose probability of being correct converges to 0. Additional

symbols are added and analyzed until the probability of one of the resulting plaintext

streams becomes 1. The probability of an m-gram occurring is measured empirically by

actually counting the number of occurrences in a representative corpus. Prior to Shannons

work, cryptographers used compilations of empirical statistics on the subject [130]. It

would be easier to calculate a simple probability density function using Baysian statistics

[15]; however, the variability of style and language usage [ 14] make the calculation very

difficult. Knowledge about the probability of letters and m-gram frequency is important.

To train the m-grams from the corpus, the input data has all non-alphabetic

characters removed. Corpus data is read in as strings of the size being trained. Training

starts with the first character in the file and increments one character at a time until each

m-gram is processed. For instance, if 2-grams are being trained, each set of two characters

is processed, beginning with the first character. Processing consists of recording that an

acceptable m-gram was found and then incrementing the position in the file by one

position. Any m-grams found are removed from a list of “forbidden m-grams. What

remain are m-gram combinations not found in the language. Training continues until the

entire file has been processed and each m-gram of interest has been trained. Each file in
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the corpus is similarly processed until the entire corpus is read. In this specific

implementation of m-gram training, the size of m-grams has been limited to 2 < m < 6,

because the number of possible m-grams to track increases quickly. For any m, the number

of m-grams is given by 26m. When m = 6, the number of 6-grams is 308,915,776. Implied

in the forbidden m-gram technique is the knowledge of which m-grams are permissible and

which are not. No ordering is required. The only information needed is whether or not a

particular m-gram is allowed. For m-grams of size n there is no relationship between

m-grams to determine which are, and which are not, allowed. The set of 2-grams is easily

partitioned by noting that for an input of a 2-gram a value of 1 is returned if the 2-gram is

forbidden and 0 is returned if the 2-gram is not forbidden.

forbidden =







0 if m-gram = permitted

1 if m-gram = forbidden

The same is true for other m-gram sets. The number of m-grams that can be

formed, and need to be checked, for a string of n letters is given by ln, where l is |A| and n

is the number of symbols in the string. English uses |A| = 26. As n increases, representing

each combination as a bit results in increasingly larger number of bits. By the time that

n = 6, the total number of bits is 308,915,776 bits, or slightly over 38 MB. Because of

limitations on the amount of memory available and the effort required to store and retrieve

data from such a large file, m-grams larger than m = 6 were not considered for use.

Multiple m-grams may reside in a string. For a string of size x, where x = 6 letters,

the number of m-grams available is given by:

num(m − grams) =
6
∑

i=2

x − (i − 1) (3.1)

With each symbol input from the ciphertext, up to five data points are added to the

sum of knowledge about the decryption. Inputs may be repeated if the letters received are
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repeated. All languages have inherent symbol repetition. Gathering more than m-grams

per input symbol helps offset data repetition. In Shannons example of the use of m-grams,

only the m-gram formed from the beginning of the ciphertext was considered. Other

m-grams formed from the middle of the stream are not considered. The use of midstream

(intermediate) m-grams is valid because it is equivalent to beginning the decryption at an

arbitrary point within the encrypted message. All keys are assumed to be equally possible

at the beginning of the decryption. There is no a priori knowledge about the keys that

would reduce that number until encrypted letters are analyzed. Letters are received one at

a time and analyzed in the same order. Decryption does not wait for the full string to be

completed prior to analyzing the message. The goal is to achieve a decryption with as few

letters as possible, developing the solution as the string develops. Hirst described

self-developing solutions as Polaroid, [140] referring to the self-developing camera film.

The remaining property sets used in the dissertation consist of those applied to

words and sentences. Word sets are made up of two dictionaries:

1. A lexicon of words in the language of interest, (excluding proper nouns) and

2. A list of proper nouns drawn from multiple languages.

Sets for words are applied to the decrypted data to ensure that the entire data

stream can be split into a continuous group of words. All possible word solutions are

produced. The word set does not ensure that the sentences composed are grammatically

correct. This task is left to the last set, which is the set of grammatically correct sentences.

A routine is called that attempts to parse the word grouping. If a parsing on one or more

of the possible word groupings is returned as grammatically correct, then the data is

readable in some form.

When using a key to break a decrypted plaintext, a string of words in English that

are understandable as a sentence or group of sentences must be formed. Checking the
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decrypted text for words requires that words are formed by the text. Partial words may be

recognized, but full words will definitely be found in the dictionary for the language. It

stands to reason that the number of symbols required for recognition should be close to the

length of words (on the average). The average length of an English word is 4.83 characters.

Finding the completed word and the beginning of the next word defines the first word and

is necessary for unambiguous word identification. At least one additional letter beyond a

word is required to terminate the word. The average of 4.83 symbols plus 1 symbol for

bounding the first word gives an expected average of 5.83 symbols.

Sentence structure restricts which words may be placed together. By restricting

word combinations, the m-grams spanning the words are limited. A full set of allowable

m-grams is defined by the allowable words and sentence structure. Words and sentences

give more total information than m-grams alone, but they require more symbols to initially

apply. While words and sentence structure are more accurate they also require more input

data. For more complex encryption methods with unicity distances longer than the average

word length, words and sentences add to the effectiveness of a pure letter based, or m-gram

based, approach.

3.4 Conclusion

Property sets are used in STE to represent the patterns and statistics of language.

However, many of the sets are not readily available. Sets that are currently available do

not include data on what examples of the language were used to create the sets. This

chapter describes the sets that were used in this dissertation, the corpora from which the

sets are drawn, and the procedure for deriving the property sets.

The steps of the STE method have the advantage of being very modular. Sets are

formed and called as needed. Sets can be formed from any corpus or language that uses an
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alphabet. Modularity greatly facilitates testing and allows comparisons of the results to

focus on the differences between corpora. Testing membership in each of the sets used can

yield one of two results; true or false. True indicates that the selected decryption keys

possess the property of the set. There is no degree of membership, it is either complete or

not at all.
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Author Title Genre Century of Work

Asimov Foundation Science Fiction 20th
Asimov Fantastic Voyage II Science Fiction 20th
Bacon Advancement of Learning Philosophy 16th
Bacon The New Atlantis Philosophy 16th
Boswell Journal, Tour to the Hebredes Travel 18th
Boswell Life of Samuel Johnson Biography 18th
Bronte Jane Eyre Gothic, Romance 18th
Bronte The Professor Gothic, Romance 18th
Bulfinch Bulfinchs Mythology Classics 19th
Bulfinch Legends of Charlemegne Classics 19th
Bunyan Exhortation Peace and Unity Philosophy 17th
Bunyan Works of Bunyan v. 1 - 3 Philosophy 17th
Burroughs Tarzan of the Apes Action 20th
Burroughs Lost Continent Action, Science Fict. 20th
Carroll Alice in Wonderland Fantasy 19th
Carroll Through the Looking Glass Fantasy 19th
Christie Mysterious Affair at Styles Mystery 20th
Christie Secret Adversary Mystery 20th
Defoe Robinson Carusoe Action 18th
Defoe Moll Flanders Political, Adventure 18th
Dickens Great Expectations Political 19th
Dickens A Christmas Carol Political 19th
Fitzgerald Flappers and Philosophers Fiction 20th
Fitzgerald Beautiful and the Damned Fiction 20th
Grey The Plainsman Western 19th
Grey Riders of the Purple Sage Western 19th
Hume Dialogues Cncrng Nat. Relig Religion 18th
Hume Principles of Morals Philosophy 18th
Milton Paradise Lost Religious, Poetry 17th
Milton Aereopagitica Poetry 17th
O. Henry Cabbages and Kings Short Story 19th
O. Henry Options Short Story 19th
Poe Collected Works, V. 1 Mystery, Horror 19th
Poe Collected Works, V. 2 Mystery, Horror 19th
Scott Ivanhoe Adventure, Romance 18th
Scott Kenilworth Adventure, Romance 18th
Shakespeare Complete Works Historical, Poetry 16th
Stevenson Dr. Jekyll and Mr. Hyde Horror 19th
Stevenson Kidnapped Adventure 19th
Swift Gulliver’s Travels Political Satire 17th
Swift A Modest Proposal Political Satire 17th

Table 3.1: Training Corpora for English
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Chapter 4

Decryption of Single and Multi Byte

Ciphers Using STE

1

4.1 Overview

Property sets are of little use in STE if they are not properly utilized to determine a set of

solutions for the problem. If ideally applied, a property set will eliminate possible estimates

each time it is applied. Some property sets are more useful when applied to sets of

estimates that have not yet been subjected to analysis; others excel when relatively few

estimates are left in the solution set. Knowing which property sets to employ and when

further application will not yield additional results are key to the efficient application of

STE.

STE is applicable for the decryption of every type of block cipher. Three commonly

used ciphers were examined and used to compare the functionality and efficacy of STE

when applying concepts from information theory to decryption. Ciphers specifically

67
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investigated were:

1. The Shift cipher;

2. The Substitution (S) cipher; and

3. The Permutation (P) cipher.

In this chapter, the application of the STE algorithm for the decryption of the shift,

S, and P ciphers are discussed. Different STE algorithms specifically attuned to each

cipher’s weaknesses are presented. The performance of each of the algorithms when applied

to various English texts from Project Gutenberg are reported [137]. An evaluation of each

cipher decryption result is presented.

4.2 Specific Cipher Type, Algorithm Application, and

Results of Testing

4.2.1 Shift Ciphers

The shift cipher [17] is a simple cipher with very few keys. Its key is a number ranging

from 0 < k < |A|. If each letter in A is numbered from 0 to |A| − 1, the key is added to the

number of the plaintext letter in order to obtain the ciphertext. The ciphertext letter (c) is

related to the plaintext letter (p) by the formula

c = (p + k) mod |A|

When k = 3 the shift cipher is called the Caesar cipher [17, 47]. The small number

of keys in other ciphers allows the tracking of each individual key inside the key space



69

during cryptoanalysis.

All single byte STE algorithms for cipher testing used a corpora drawn from English

texts found on the Project Gutenberg website. However, the cipher tested corpora did not

use the same texts used to generate the English language property sets found in Chapter 3.

The general STE algorithm discussed in Chapter 3 was used and then fine-tuned using

heuristic data for each cipher to form new property sets. Heuristic property sets were

created through research of cryptanalysts, linguistic specialists, language statistics, and

stylometry. The information in these sources allowed the characterization of language and

the formation of cipher specific property sets. Individual cipher algorithms used for all the

single byte ciphers discussed were specifically designed to increase decryption speed and

accuracy.

Each shift cipher decryption began the same way by choosing a random key and

then encrypting a message using that key (see Figure 4.1). Next, all possible keys were

listed, with each key marked as “active” (not rejected). Each key is an estimate in the

solution space. Then the property sets were applied, beginning with a group of characters

equal to the smallest m-gram property set to be used. At the conclusion of this process,

the next character from the message was added to the string being considered and the

same property sets were reapplied. For each new letter in the message, the newly formed

ciphertext m-grams were decrypted using each of the active keys. If the decryption of the

m-gram was found in the property set (i.e. it was allowed), the estimate remained active.

Otherwise, the estimate was rejected and was no longer considered as a possible decryption

key. The algorithm continued until no letters remained in the message, all possible keys

were rejected, or a unique solution was found (see Figure 4.2).
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4.2.1.1 Empirical Results For the Single Byte Shift Cipher

The unicity distance (n) for the shift cipher is 1.3 characters [47]. Test results for the

algorithm were based on the use of only the 3-gram and 5-gram sets (see Table 4.1). Test

results for both 3-gram and 5-gram sets produced the same decryption results as using all

m-gram sets, but reduced computational time and memory use.

A total of 4,916 tests were conducted with a decryption success rate of 95.487%.

Decryption took an average of 5.55 characters (with a standard deviation of 1.42

characters) or approximately 4.27n. The amount of the time needed to come to a solution

was to short to measure using the program’s time measurement function (t < 1 ms). Files

that did not correctly decrypt were due to the inclusion of foreign names and locations, as

well as imaginary words found in the text. Such words are interpreted as invalid in the data

sets. Adding a corpus of names, words and locations will solve this decryption problem.

Though the shift cipher is not considered to be a secure cipher, the results prove

that the STE approach is viable for shift cipher decryption. It is not, however,

cryptographically interesting since the small key space of the shift cipher can be easily

defeated by a brute force attack. Although other ciphers with a substantially larger key

space can be attacked using brute force, the amount of time it would take to apply each

key makes the attack infeasible.

Measure Results

Mean 5.55 characters
Std Dev 1.42 characters
No. Tests 4916
Correctly Solved 95.487%

Table 4.1: Shift Cipher Results
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4.2.2 Substitution Cipher

Shift ciphers are a simple form of a general substitution cipher. Substitution (S) ciphers

map a character c | c ∈ A to a symbol set A′. The sets A and A′ may be identical or they

may be different. The only requirements for the sets are that a unique mapping exists,

where A 7→ A′ and |A| ≤ |A′|. In English, S ciphers have a key space of 26! keys, 25! more

keys than the shift cipher. However, substitution ciphers do not disguise language statistics.

4.2.2.1 Theoretical Basis for Single Byte Substitution Cipher

A decryption solution does not have to be found that includes the correct mapping for all

letters ∈ A. Ciphers are designed to exhibit a one-to-one mapping. That is, each key maps

the input message (M) to a unique ciphertext encryption, Ek(M). Therefore, for each

ciphertext block, ∃!k, resulting in the correct key. However, there are cases when several

keys can yield the same decryption for a message. This is true when the message does not

contain all of the letters in A. In these cases,

Eki
(M) = Ekj

(M), (4.1)

where i 6= j. Such keys are said to be “equivalent” for message M .

Lemma 4.1: For an S cipher applied to a message (M), there are (|A| − |T |)! isomorphic

keys.

Proof: For two keys, ki and kj, to be equivalent for a message (M),

Eki
(M) = Ekj

(M) → Dkj
(Eki

(M)) = Dki
(Ekj

(M)).

Let T be the set composed of each unique xi ∈ M . The partial key T 7→ A′ contains all of

the information required to decrypt M . Any key containing the partial key T 7→ A′ will
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correctly decrypt M . The number of symbols that do not appear in the message is given by

|A| − |T |. Selecting each of the unused symbols and counting the number of mappings for

each symbol gives (|A| − |T |)! possibilities. 2

Equivalently, this Lemma can be deduced from Wells’ isomorph (equivalent key) argument:

Let x, y ∈ A. Let x be a plaintext character and y be a ciphertext character. Without loss

of generality let x, y ∈ {0, ..., |A| − 1}. A substitution cipher with key k is an encryption

such that ∀xi ∈ A, ∃!yi ∈ A such that yi = xi + ki mod |A| and i 6= j implies that

yj = xj + kj mod |A| is such that yj 6= yi, xj 6= xi, and kj 6= ki,

ki, kj ∈ {0, ..., |A| − 1} ∀ y, x, k ∈ {0, ..., |A| − 1}.

Let M be a message composed of letters x ∈ A such that {x ∈ M} ⊆ A. Let this set

{x ∈ M} = T . Without loss of generality enumerate the xi ∈ T such that i < j implies xi

first appears in M prior to the first appearance of xj, j 6= i. Let m = |T | and n ≥ |A|.

Then we can write the enumerated set T as T = {x1, ..., xm}. For a substitution cipher

with key k we then have the enumerated ciphertext messages T ′ = {y1, ..., ym} with

yi = xi + ki mod |A| ∀ xi ∈ T and with ki 6= kj if i 6= j. Clearly |T | = |T ′| = m ≤ n. The

substitution cipher over M is then defined by k = {k0, ..., kn} where

i < j ⇒ substitution ki; first occurs prior to the first occurrence of substitution kj in the

encryption of M . k can now be described as a tree. Given (xi, yi), ki is specified. There are

now |A| − 1 unspecified ki remaining in k and the total number of possible specifications

remaining is (|A| − 1)!.

Now given (x2, y2), k2 is also specified. There are now |A| − 2 unspecified ki

remaining in k and the total number of possible remaining specifications remaining is

(|A| − 2)!. By induction, after the nth pair (xn, yn) and their specified kn are given, there

remain k − n unspecified substitutions and the possible specifications is (|A| − n)! But,

n = T , therefore, the number of isomorphic keys that encrypt M into the same ciphertext
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y is:

|k| = (|A| − |T |)!

As an example, let an alphabet A 7→ A using a S cipher. Further, let A={0,1,2,3,4},

and a message M = {11212112}. Therefore, |A| = 5 and |T | = 2. Of the five symbols in

the alphabet, two are mapped. The mappings of the remainder of the symbols are

irrelevant to the decryption of the message. Assuming that the mappings for the characters

in the message are the characters c0 7→ ‘1’ and c1 7→ ‘2’, then the equivalent keys that

correctly decrypt the message (M) are:

{c2, c0, c1, c3, c4}

{c2, c0, c1, c4, c3}

{c3, c0, c1, c2, c4}

{c3, c0, c1, c4, c2}

{c4, c0, c1, c2, c3}

{c4, c0, c1, c3, c2}

The number of equivalent isomorphic keys listed is 6, which, by Lemma 4.1:

(|A| − |T |)! = (5 − 2)! = 3! = 6
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4.2.2.2 Testing Procedure for the Single Byte Substitution Cipher

The decryption algorithm for the single byte substitution cipher began by forming a

solution matrix that mapped a ciphertext character to a plaintext character. Each applied

property set sought to eliminate one or more possible mappings in the matrix. The

property sets implemented for decryption of S ciphers included: letter frequency (using

runs of letters) and allowed m-grams (from 2 ≤ m ≤ 6). The run length of the original

message determined the portion of the message on which analysis began. First, the

program completed the background tasks needed to track partial keys (i.e. assembly of a

solution matrix, reading in of property sets and ciphertext, and calculation of character

frequency). The computational overhead portion of the program used can be seen in Figure

4.3. Then decryption took place according to the algorithm shown in Figure 4.4.

When decrypting S ciphers, each symbol was mapped independently, with the

constraint that all symbol mappings were unique. A key for the S cipher was represented by

a matrix of each ciphertext character to every plaintext character. The intersection in the

matrix of plaintext to ciphertext characters contained the information about the mapping.

A ‘1’ indicated the mapping was known, a ‘0’ indicated the mapping was impossible, and a

‘.’ meant the mapping was possible, but not yet confirmed as the belonging to the key.

Each matrix row and column were only allowed to contain a single ‘1’.

Beginning with the run size of the original message, letter frequency and allowed

m-gram property sets were applied. Property sets helped infer which estimates could be

eliminated. For example, if the mapping for the letter ‘q’ was known, the mapping for the

following character could be considerably narrowed. In formal English, the letter

exclusively appearing after ‘q’ is ‘u.’ Therefore, a majority of other potential mappings

could be invalidated. The algorithm continued iterating over the message until all spurious

estimates were eliminated, all ciphertext had been processed, a solution had been found for
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the message processed to that point, or no solution was found.

4.2.2.3 Empirical Results for Single Byte Substitution Ciphers

The unicity distance for the S cipher is between 25 and 26 characters [17, 47]. Property

sets used during testing included: letter run, allowed m-grams (2 ≤ m ≤ 5), and multiple

letter sets. A total of 1,437 tests were run with 85.53% decrypting correctly. An average of

256 characters, or 9.85n, were required for successful decryption. Messages decrypted in an

average of 50.7 seconds. Tests run on S cipher encrypted texts are summarized in Table 4.2.

S cipher texts took more time to run and required more of the message to decrypt than the

shift cipher. This time difference was to be expected as the key space for a S cipher is |A|!.

There is a large difference between the number of keys in shift and substitution ciphers (26

vs. 4.03 x 1026 keys). Thus the time needed to sort through possible keys increases.

The reduction of decryption accuracy between shift and S cipher testing is partially

due to incomplete characterization of the language in the property sets, especially the

m-gram sets. Although the language property sets used were trained with a more

comprehensive corpora than seen before, they are still susceptible to deviations from

language norms and introduction of new author styleship. Therefore, unless all users of a

language are surveyed during the training process, some examples of language use may be

missed. Thus potential errors in decryption are created. These potential errors will remain,

regardless of the training used, but the property sets used in this dissertation are thought

to have reduced such errors. For example, US Navy code breakers during World War II

were typically able to decrypt only about 10 - 15% of any given message encrypted using

Japan’s JN-25 naval code according to Cmdr. Joe Rochefort, Commander of Hawaii’s

“Station Hypo” unit. Other factors which affected decryption accuracy included texts

containing proper names, foreign names, foreign words, and imaginary words.

One very practical topic for future research is to develop an algorithm to exploit the
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phenomenon of equivalent keys discussed in section 4.2.2.1 based on fuzzy rather than crisp

parsing of the key solution set. Mathematically this can be approached by replacing the

crisp ‘1’ and ‘0’ entries in the mapping matrix with fractional entries 0 ≤ f ≤ 1 denoting

the level of confidence in a plaintext to ciphertext mapping. This idea is analogous to the

method of soft output decision decoding used in block turbo error correction codes [141]. It

is already known that STE easily accommodates so-called “fuzzy” decision-making

techniques [12]. Such an approach can improve the decryption percentage by reducing

information loss in the mapping matrix.

4.2.3 Permutation Cipher

Permutation (P) ciphers are primarily used to disguise language statistics [5, 17]. Taken as

a block of n bits from a stream of bits (representing symbols from bits bm to bm+n),

permutation ciphers reorder the bits in the block according to a mapping key [17]. Bits

may be placed anywhere in the permuted block and may even be placed in more than one

location inside of the block.

Movement of these bits results in diffusion across byte boundaries. Diffusion of

information makes it difficult to collect and organize dispersed information, strengthening

the security of a cipher. The P cipher is important theoretically as it is a major component

of cipher mixing for block ciphers, such as the permutation substitution permutation (PSP)

cipher. The PSP cipher is considered to be a strong cipher as it follows Shannon’s cipher

mixing formula [5]. The importance of PSP ciphers will be discussed further in Chapter 5.

4.2.3.1 Theoretical Basis for Single Byte Permutation Ciphers

P ciphers can be solved in two steps. Mathematically speaking, let a P cipher be applied to

a block of bytes. B ∈ A is an encoded representation of the character. |B| is the number of
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Figure 4.1: First Algorithm Step

Measure Results

Mean 256 characters
Mean Time to Solve 50.7 seconds
No. Tests 1437
Correctly Solved 85.53%

Table 4.2: Substitution Cipher Results
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Figure 4.2: Shift Cipher Algorithm
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Figure 4.3: Substitution Cipher Overhead



80

Figure 4.4: Substitution Cipher Algorithm
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bits being permuted; St is the static bits in the block. Static bits are bits whose plaintext

value never changes. Static bits may be of either bit value, determined by the particular

encoding used. For example, each letter in ASCII encoding begins with the bits 110.

Because permutation mappings do not change bit values, static bits remain “static” in all

blocks of the ciphertext. The entropy associated with those bits is 0, since their position

can be determined and absolutely known.

Mathematically speaking, let the number of static ‘1’s in a block of message M be

represented by |1′s| and the number of static ‘0’s be represented by |0′s|. Let

C = min(|1′s|, |0′s|) (4.2)

For example, assume that a P cipher is applied to a three byte ASCII letter-only message.

There would be nine static bits in each block (six ‘1’ bits and three ‘0’ bits). In this case,

C = 3, the number of the ‘0’ static bits in the block.

Theorem 4.1: For a P cipher applied to a message (M), there are

(|B| − |St|)!
(

|St|
C

)

unique keys.

Proof: For a message (M), a bit at location (i) of a byte (B) is static iff

∀Bx, By ∈ M, Bx,i = By,i. The static bit set (St) is composed of the unique static bit

mappings Bi. The number of remaining partial keys is (|B| − |St|)!. Depending on the

combination of static bits, the static bits can reduce the number of equivalent keys. Bits

may have one of two values: ‘1’ or ‘0.’ There are

(

|St|
C

)

distinct possibilities for the

combinations of static ‘1’ and ‘0’ bits. The maximum number of equivalent keys occurs

when all of the static bits are of the same bit value. The remaining B − |St| bits can be
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selected (B − |St|)! unique ways. Combining the possible choices for both the static and

dynamic keys is the product of both sets of choices. Therefore, for the P cipher, the total

number of unique keys is given by:

k = (|B| − |St|)!
(

|St|
C

)

. (4.3)

Equivalently, while this proof follows Poincare and Lakotos’ model [142] for proofs, a

more formal proof follows. Theorem 4.1 can be proved using Wells’ isomorph argument:

Let permutation matrix k be |B| × |B|. There are then |B| choices for placement of

the ‘1’ term in the first row. In the second row the ‘1’ cannot be place in the same column

as that in the first row. Therefore the number of choices remaining is |B| − 1. For the 3rd

row the number of choices is similarly |B| − 2. By induction, therefore, the number of

permutation matrices is:

|k| = |B| × (|B| − 1) × (|B| − 2) × ... × (2) × (1) = |B|!

Now assume the block being encoded contains |St| static bits. As these bits make no

contribution to the entropy in the ciphertext is equivalent to a permutation cipher applied

to a block of |B| − |St| bits and so the isomorphic key subspace contains |k′| = (|B| − |St|)!

keys.

Within the original plaintext vector, all distributions of static bits are isomorphic to

a systematic vector x̄s containing |1′s| ‘1’ bits as its first entries and |0′s| ‘0’ bits as its next

entries. Denote this subvector as s̄ = {1...10...0}. For example, if |St| = 5 and |1′s| = 3

then s̄ = {11100} and C = min(|1′s|, |0′s|) = 2. The number of isomorphic permutations of

s̄ is found by re-arranging the locations of the ‘0’ bits by exchanging their positions with

the ‘1’ bits. e.g.
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11100 11001 10011 01011

11010 10101 00111

10110 01101

01110

Note that
(

5
2

)

= 5!
3!2!

= 10, the number of isomorphic permutations just illustrated. In

general the number of isomorphic permutations of s̄ plaintext vectors is
(|St|

C

)

.

Let ȳs be the isomorph ciphertext obtained from the isomorph plaintext x̄ = (s̄ : x̄′).

Then

ȳs = x̄

∣

∣

∣

∣

∣

∣

∣

∣

I 0

0 k′
22

∣

∣

∣

∣

∣

∣

∣

∣

where I is |St| × |St|, k′
22 is (|B| − |St|)× (|B| − |St|). Then ȳs = (s̄ : x̄′

sk
′
22) where x̄′

s is the

non-static subvector of x̄s. All possible ciphertexts are isomorphic to ȳs and the cardinality

of this set is equal to the product of the informative submappings x̄′k̄′
22 and the number of

isomorphic transformations on x̄s. Therefore, the number of unique keys is:

k = (|B| − |St|)!
(

|St|
C

)

.

2

Corollary 4.1: For a P cipher applied to a message (M), there are

ke =

|B|! −
(

|St|
C

)

(|B| − |St|)!
(

|St|
C

)

(|B| − St)!

image keys.

Proof: For the P cipher, there are a total possible B! keys, neglecting equivalent
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keys. Any isomorphic keys must be equivalent. The total number of equivalent keys is

|B|! −
(

|St|
C

)

(|B| − |St|)!. Because the remaining keys come from the same key space, the

equivalent keys are equally distributed within the isomorphic subspaces, resulting in

ke =

B! −
(

|St|
C

)

(|B| − |St|)!
(

|St|
C

)

(B − St)!

equivalent keys for each isomorph key.

Alternately, the Corrollary can be deduced more formally as follows:

The size of the total keyspace universe is |B|! Within this universe the number of

unique isomorph keys is (|B| − |St|)!
(

|St|
C

)

by Therorem 4.1. Therefore, the number of

image keys is

|keyspace universe| − |isomorphic key subspaces| = |B|! − (|B| − |St|)!
(

|St|
C

)

.

The number of image, or “spurious” keys is, therefore:

ke =
|keyspace universe|

|isomorphic key subspaces| − 1

=
|keyspace universe| − |isomorphic key subspaces|

|isomorphic key subspaces|

=

|B|!−
(

|St|
C

)

(|B| − |St|)!
(

|St|
C

)

(|B| − |St|)

2

For a message (M), the key space is dependent on the characters seen in the

message. Let KM,c represent the key space for the message using cipher (c) and Kc
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Figure 4.5: Keys per Unique Symbol Count in a Message
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represent the maximum key space for a cipher (c). Then

|KM,c| ≤ |Kc|. (4.4)

The unicity distance for a message is

nM,c =
log(|KM,c|)
Rλlog(|A|) . (4.5)

By extension

nM,c ≤ nc =
log(|K|)

Rλlog(|A|). (4.6)

4.2.3.2 Testing Procedure for Single Byte Permutation Ciphers

A corpus of 600 texts downloaded from the Gutenberg Project in the 2003 download CD

was used for testing the permutation decryption algorithm.

The key space for a message does not have to be identical to that of the key space

for the language and cipher in general. Each message must be evaluated on an individual

basis, taking into account the ciphertext seen in the encrypted message. Messages of

identical length may have vastly different information content. As a result, one message

may be subject to decryption while another, with different content, may not reveal enough

information to be decrypted.

As described in the last section, the first step in decrypting the P cipher was to find

and map the static bits. The time required to find the static bits depended on the

redundancy of the message. Static bits in a P cipher can be found by using a modified

intersection. For two blocks, Bi and Bj , and any bit n in those blocks (denoted by Bi,n and



87

Bj,n), define a template vector Bs = Bi
ˆ⋂Bj , where:

Bs = Bi
ˆ⋂Bj =























0, if Bi,n = Bj,n = 0;

1, if Bi,n = Bj,n = 1;

x, if Bi,n 6= Bj,n.

If plaintext letter distribution is random, then maxentropic non-static bits have a 0.5

probability of each character changing value. Hence, on the average, every dynamic bit

changes value at least once in each log2(|B| − |St|) bytes. However, language redundancy

reduces the probability of bits varying from byte to byte. The empirical testing on static

bit identification was never more than two bytes over the lower limit. Therefore, the cost of

finding the static bits (cSb), in bytes, was always in the range of

log2(|B| − |St|) ≤ cSb ≤ log2(|B| − |St|) + 2 (4.7)

The second task was to find the key for the non-static bits (see Figure 4.6).

Reordering the bits in the encrypted block did not change the bit values in any way.

Therefore, the number of bits with a value of ‘1’ (and consequently, the number of bits

with a value of ‘0’) remained constant in each byte during the encryption process. Each

decrypted byte needed a minimum of four, but not more than seven, ‘1’ bits to decrypt

into readable text. Using the knowledge of the encrypted block size, it was then possible to

count the total number of ‘1’ bits and partition letters into sets based on the number of ‘1’s

in their encoded byte. Sets were identified by the number of ‘1’s (n) and was denoted as

Ln. This property set was called the “Number of Ones.” For any two bytes in the message

(Ba and Bb), each key (ki) was then checked and retained iff

Dki
(Ba) ∈ La && Dki

(Bb) ∈ Lb (4.8)
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Following the number of ones set, the allowed n-gram set was applied to further reduce

keys resulting in impossible mappings.

At the beginning of the intersection process, the number of keys eliminated was very

high. As the process continued, reduction of the number decayed exponentially and the

progress in key reduction slowed. Let m be the estimated slop of the reduction and note

m < 0. The algorithm searched for a point where the slope began to flatten and the

magnitude of the slope fell below |m| = 1. Termination for the stated slope condition works

well for a majority of keys. However, some keys display a much shallower slope and the

termination condition stopped the process too soon. An arbitrary decision was made to

also require that less than 50,000 possible keys also remained in the solution set S.

Consequently, the new termination condition became

(|m| < 1) ∧ (S ≤ 50, 000).

The next group of sets applied were the forbidden n-grams (see Figure 4.7). By

taking the observed ciphertext and possible remaining keys, the ciphertext was decrypted

byte by byte according to the key (see Figure 4.8). Each decrypted block was then

compared against the list of forbidden 3-grams. If the decrypted block was forbidden, the

key was eliminated from consideration. If the decrypted block was allowed, the decrypted

text seen to that point was analyzed for forbidden m-grams. If one was found in the run,

the key was eliminated from consideration. Keys were applied and eliminated until one or

zero keys remained (see Figure 4.8).

In summary, the accuracy of the results depended heavily on the composition of the

forbidden n-gram sets. Proper nouns representing the names of persons and places caused

keys to be incorrectly eliminated from consideration. Relaxation increased the accuracy of

the final result while only adding a small number of additional blocks during the
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Figure 4.6: Permutation Cipher Algorithm, Part 1
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Figure 4.7: Permutation Cipher Algorithm, Part 2
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Figure 4.8: Relaxation
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decryption process.

Throughout testing, the sources of error in the decryption process were noted. The

correct key was not eliminated until the forbidden n-grams were applied. All of the steps

leading up to the application of the forbidden n-gram sets did not address issues of style

and language use. Rather, the sets dealt with the combinatorics of the alphabet in a

language. Stylometry was reflected in the experiments that allowed variation in n-gram

content.

The attack on the permutation cipher involved a two-step process, taking advantage

of the ASCII representation of characters. Static bits are identified and solved in the first

step. Solving for the static bits in the encryption is O(lg(n)), with possible deviation from

the theoretical complexity due to redundancy in the language.

The second step found the bit mappings for dynamically changing bits. This began

with finding the mappings that, given the ciphertext block of input, form ASCII letters for

all of the bytes in the block. The set of mappings were then intersected with the possible

mappings for the message prior to that block. When the set was small enough to be

searched exhaustively, the sets of allowable n-grams were applied. Any mapping that

produced forbidden n-grams was discarded. Because the inclusion of foreign languages and

different author styles, the program included relaxation techniques. Relaxation allowed

several failures, in terms of forbidden n-grams encountered in the text, before eliminating

the mapping.

4.2.3.3 Empirical Results for Single Byte Permutation Ciphers

A single byte P cipher has a unicity distance (n) of 2.66 for English ASCII plaintext.

Results for testing done on the P cipher are summarized in Table 4.3. Consisting of 1,047

decryption attempts, 99.85% of the files were decrypted successfully. An average of 19.34

characters (7.27n) and 0.563 seconds were needed for each decryption. Because the key
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space for a P cipher only has 360 keys, the unicity distance is much smaller than for a S

cipher. The average number of characters required for successful decryption of a P cipher is

lower than that needed for a S cipher. However, compared to the shift cipher, the number

of characters and time needed for decryption was higher. This difference is again

attributable to the larger key space of P ciphers compared to the shift cipher. Files that

did not decrypt correctly failed due to the presence of foreign and imaginary words.

Measure Results

Mean Time to Solve .563 seconds
No. Tests 1047
Correctly Solved 99.85%

Table 4.3: Permutation Cipher Results

Applying the algorithm to all texts, regardless of the language of the text, a total of

1,485 decryptions were attempted (see Table 4.5). Each test randomly selected a file from

the corpus, chose a random permutation key, encrypted the text, and then attempted to

find the key and decrypt the text. Approximately 71.38% (or 1,060 files) of the tested files

were decrypted correctly. A number of the files that could not be correctly decrypted

contained non-English words, often in the form of foreign names and places. Additional

files were undecryptable due to the use of non-standard English inside the text files. These

files, whose texts were completely comprised of a foreign language, were considered to be

controls. Thus, their “failure” was expected and confirmed the findings for single-byte

ciphers. By removing files that contained entirely foreign (invalid) text, the percentage of

correctly decrypted files rose to 77.82%. The files encountered, and the reasons for

excluding certain files tested from consideration, are given in Table 4.4.

The unrelaxed success percentage was nonetheless greater than the percentage of

the testing set that was comprised of English texts. This raises the interesting conjecture

that there are some significant structural similarities between English, the Romance
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languages and those deriving from old Germanic, since the success percentage was almost

exactly the average of the English fraction and the English plus those other languages

fraction. However, this conjecture goes beyond the scope of this dissertation.

In response to the errors introduced by names, places, and non-standard language

use, a “relaxation” technique was implemented. Relaxation is meant to allow a limited

number of names, places, and foreign words to be processed without eliminating the

ciphertext to plaintext mapping associated with the words. Assuming that the words

triggering decryption failures are infrequently found in the files, each mapping is assigned a

number of failures before that mapping is eliminated from consideration. The results for 0 -

3 relaxations is shown in Table 4.5. Above 3 relaxations the increased decryption accuracy

falls off. Final results for the P cipher included 6 relaxations. A slight dip in accuracy

occurred at 2 relaxations due to the increased number of non-standard English words found

with the additional input characters read. The key was found later in the message and as a

result, more of the message was input for analysis.

4.3 Chapter Summary

In this chapter, the performance of STE was presented when applied against the shift

cipher, S cipher, and P cipher. STE methodology was found to be sound for decryption of

the shift, S, and P ciphers. Decryption required less than 10n characters in all cipher cases,

a lower character count than presently available using current decryption techniques [132].

Peleg reports that an average of approximately 5,000 characters (approximately 192n) is

required using his, and other, decryption algorithm.

STE-based decryption algorithms were found to be effective even when only using

3-grams as the forbidden m-gram property set. However, for each cipher tested a different

algorithm was employed that used heuristic data to guide the development of the attack.
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File Name Language Failure Reason Number of
Failures

pimil10cp.txt English Technical Language 2
hpaot10cp.txt English 1
remus10cp.txt English Non-standard English 2
0ddc809acp.txt Italian Foreign Language 2
8gs3410cp.txt English Foreign Names and Places 3
galli10cp.txt Latin Foreign Language 1
rnpz810cp.txt Polish Foreign Language 7
mthts11cp.txt English 1
8lndp10cp.txt German Foreign Language 3
anidl10cp.txt Italian Foreign Language 2

g1001108cp.txt English Foreign Names and Places 1
esper10cp.txt Esperanto Foreign Language 1
1mart10cp.txt English Insufficient Corpus Size 1
scarp10cp.txt English Foreign Names and Places 1
kalev10cp.txt Finnish Foreign Language 7
kalec10cp.txt Finnish Foreign Language 1
7mynr10cp.txt Dutch Foreign Language 6
41001108cp.txt English Foreign Names and Places 1
21001108cp.txt English Foreign Names and Places 1
8rdsl10cp.txt English Foreign Names and Places 1

clprm10ucp.txt Icelandic Foreign Language 3
8clel10cp.txt English 3

Table 4.4: Permutation Decryption Files Failing Successful Decryption

Relaxation Tests Correctly Decrypted Correctly Decrypted
Errors to Decrypt Number (Percent)

0 1485 1060 71.38%
1 2239 1924 85.93%
2 749 622 80.34%
3 1600 1586 99.125%

Table 4.5: Permutation Decryption Results with Relaxation
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The question then arises whether or not a single STE-based algorithm can decrypt S, P,

and product (combination) ciphers. This question will be addressed in Chapter 5.

The contributions of this dissertation, with respect to the shift, S, and P ciphers are

as follows:

1. Design of algorithms that applies STE to the shift, S, and P ciphers;

2. An algorithm that identifies static bits arising from the encoding of characters; and

3. An algorithm that targets and retrieves static bits.

In addition, the theorem proofs in this chapter reinforce the usefulness of the

topological space paradigm upon which the STE method is based. This is particularly

illustrated by the notion of isomorph texts and isomorph keys when these are likened to a

“center neighborhood” in the neighborhood systems approach to topology. The notion of a

“center neighborhood” is analogous to the notion of the center of an ellipsoid in OBE

approaches to STE.
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Chapter 5

Applying STE to Product and Block

Ciphers with Diffusion Across Byte

Boundaries

5.1 Overview

Most modern encryptions are product and block ciphers consisting of combinations of S

and P cipher. S ciphers provide confusion and P ciphers supply diffusion. Confusion

substitutes one character for another while diffusion distributes information across the

encrypted message. The intent of diffusion is to disguise language patterns in the original

message by spreading the pattern throughout the message. Confusion alone fails to

disguise language patterns, making it susceptible to frequency and redundancy based

attacks. Diffusion can easily defeat such tactics by spreading information throughout the

block. Diffusion that rearranges information inside the same byte in which it is found

(“bit-wise diffusion”) is easily defeated. Information diffusion outside the original byte

(“diffusion across byte boundaries”) is much more difficult to defeat. Diffusion across byte

97
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boundaries can be attacked using the assumption that a block comprises a single character

in a language, a “meta-character.” Language patterns are not disguised using the

meta-character assumption.

This chapter will discuss the extension of the STE techniques used for single byte

ciphers to block and product ciphers. The use of meta-characters to address diffusion

across byte boundaries is explained. An evaluation of the equivalent security added by

combining P and S ciphers will also be given. The subsequent application of the algorithm,

testing, and results are also presented.

5.2 Review of Theory

5.2.1 Chapter Definitions

The decryption algorithm for block (product) ciphers used in this chapter is based upon an

unusual parsing of symbols within a language. Defeating permutation across block

boundaries requires treating the language as if the block of characters was actually a single

character of a different language. The block comprises a character made up of characters,

or a “meta-character,” which is part of a “meta-language.” Prior to the presentation of the

material in this chapter, several definitions are required. The definition of terms used in

this section are as follows:

Definition 5.1: meta-s-character

A meta-s-character is an m-gram of size s = |m− gram| alphabetic symbols from the

original language. For example, the meta-character ‘the’ is referred to as a

meta-3-character. Meta-characters are treated as a single symbol in the language. Block

ciphers that encrypt s characters at a time are encrypting a meta-s-character. 2

Definition 5.2: meta-s-gram (meta(s,m))
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A meta-s-gram (meta(s,m)) is an m-gram composed of m meta-s-characters. For example,

the text composed of ‘theonl’ is a meta(3,2) made up of two different meta-3-characters

‘the’ and ‘onl ’. Note that a meta(s,m) is equivalent to an m-gram of the size s ∗ m. 2

Definition 5.3: Meta-language

A meta-language is a language composed of meta-s-characters embedded in the same

natural language. A different meta-language exists for each meta-s-character size. For

example, a meta-s-character ‘flyinsk ’ is drawn from a meta-language with an alphabet

using ‘f,’ ‘l,’ ‘y,’ ‘i,’ ‘n,’ ‘s,’ and ‘k.’ 2

5.2.2 Product Ciphers

Product, or combination, ciphers are ciphers resulting from the serial application of

encryptions to a single plaintext message. Encryption can utilize a single symbol in the

language or can be extended to a meta-s-character. In this cipher, a message is initially

encrypted using one key and cipher. The resulting encryption is then re-encrypted using

another cipher and/or different key [18]. Many subsequent ciphers and keys can be applied,

depending on the time and resources available. Information is not restricted to the same

byte of data in which it originated.For example, permutations on multi byte blocks allow

for any bit in the block to be permuted to any other location inside the block, even across

byte boundaries. Ciphers that diffuse data are specifically chosen so that they allow

diffusion across byte boundaries. This is a much more difficult problem than bit-wise

decryption. The problem is so difficult that cryptanalysts have chosen to create different

attacks rather than deal with the diffusion [21, 17]. The algorithm described in this chapter

deals directly with the diffusion across byte boundaries, a contribution of this research.

Product ciphers are thought to be more secure than a single byte S or P type

cipher. A measure of relative security is derived from the key space (Kpc) [18], which is
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|Kpc| =
n
∏

i=1

|Kci
|, (5.1)

where Kpc is the keyspace of the product cipher and Kci
is the keyspace of cipher ci.

Since Shannon introduced the concept of compounding ciphers to increase security,

it has been generally accepted that PSP product ciphers [5, 47, 143] are more secure than a

cipher consisting of only a permutation (P) (see Figure 5.1) or a substitution (S) cipher.

All product ciphers, such as the PS and PSP, are block ciphers. A property of block

ciphers is that all information in the block is kept inside the block during encryption. This

fact can be used to solve the problem of decryption of block ciphers. The assumption of

additional security is not true for block ciphers whose encryption algorithms end at byte

(character) boundaries and are encoded using ASCII (see Figure 5.2). Block ciphers with a

size of n × c characters per block suffer from a significant weakness; that is, information is

confined within the block.

5.2.3 Block Ciphers

Block ciphers [18] encrypt all characters in a block at the same time. Encryption can take

the form of any combination of ciphers. Maurer, et al. [18] state that product ciphers have

a keyspace comprised of the product of the key spaces of the constituent ciphers making up

the product cipher. Larger key spaces mean a higher unicity distance unless an attack or

principle (such as idempotence) exists that reduces the key space. Since all ciphers

ultimately reduce to either S or P ciphers, block ciphers are either S, P, or some

combination of the two.

The diffusion arising from permutation can take several forms and greatly affects

the key space. Permutation in the block can take one of three forms:

1. Permutation of entire bytes (bytewise permutation).
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Entire bytes within the block are reordered. Reordering is similar to a transposition

cipher (which moves characters inside of bits, see Figure 5.3) [17]. Reordering bytes

within the block does not sufficiently diffuse data and so is easily defeated during

decryption attacks. There are only B! combinations of symbols, where B is the

number of bytes in the block.

2. Permutation of bits inside the same byte where they originally appear.

All bytes consist of the reordered bits of the same byte (see Figure 5.4). All

information remains inside the same byte and so is easily attacked. The number of

possible mappings is limited to (b!)B, where b is the number of bits in the byte and B

is the number of bytes in the block.

3. Permutation within the block, but not restricted to the original byte in which they

appear (bitwise permutation). Decryption of bitwise diffusion is a difficult problem

[17, 47]. Any bit in the block can be placed at any bit location inside the same block

(see Figure 5.5). This reorganization makes it more difficult to reassemble the bytes

in the block in correct order. The number of possible mappings become (bB)! where b

is the number of bits in a byte and B is the number of bytes in the block. In this

dissertation, all P ciphers will use bitwise permutation as it is considered the most

difficult type of diffusion to break.

Treating a block of characters as if it was one character solves the problem of lost

information from the original message. The meta-characters have the same characteristics

as symbols in any other language, including redundancy and frequency. While there are a

correspondingly higher number of meta-characters with a larger meta-character block size,

the redundancy of the meta-characters decreases and becomes more uniform. But, because

the meta-language behaves in the same way as the original language, it is possible to use

the same techniques for block ciphers as was used for single byte (character) ciphers.
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Figure 5.1: Permutation Cipher

Figure 5.2: PS Type Cipher



103

Figure 5.3: Byte Permutation

Figure 5.4: Permutation Inside Byte

Figure 5.5: Bitwise Permutation
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However, the security of block and product ciphers may not be as strong as

previously thought. When Feistel introduced the Feistel round cipher (a form of PSP block

cipher using permutation across byte boundaries) in 1973, he stated that all ciphers

decompose into S type ciphers [19]. Using a meta-s-character whose number of constituent

symbols is equivalent to the product cipher block size also results in the reduction of the P,

XOR, and rotation ciphers to the S cipher. The AES cipher [17], while not composed of

Feistel rounds, makes heavy use of rotations, substitutions, and XOR ciphers. The same

cipher reduction applies to AES, as well. In both cases, security is limited by block size,

rather than enhanced by cipher mix complexity.

5.3 PS Security Equivalence to the S Cipher

Block ciphers of PS and PSP type are composed of a P cipher and an S cipher. The size

of the key space for the P cipher is b! where b is the number of bits in the block [17, 47, 15].

Similarly, the S cipher maps an alphabet A to another group of symbols, A′, where

A 7→ A′. For S ciphers, it is also possible that A = A′. The key space is |A|!, where |A| is

the number of symbols in the alphabet [17, 47, 15]. Substitution can also encrypt blocks of

letters at a time; e.g., mapping a block of two characters to another two character group.

Combining both P and S ciphers into a block cipher using identical block

boundaries results in a key space of size b!|A|!. When extending the block cipher to a PSP

cipher, the size of the key space becomes b!|A|!b!.

Although the key space increases rapidly as each new cipher is added to the product

cipher, it is unclear if the additional overhead involved in the encryption of a PS or a PSP

cipher results in increased security. To address this question, a comparison of block

substitution cipher security to the security of PSP type ciphers must be made.

Consider a case where a message is encrypted first by a P cipher and then by an S
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cipher. Without loss of generality, let the plaintext consist only of lower-case alphabetic

characters with all spaces and punctuation removed. Assume that standard decryption

assumptions apply (i.e. the message uses standard ASCII encoding, the permutation

employs a three character (byte) block, and that the byte and block boundaries are known

for the encrypted message). The equivalent security of the PS and S ciphers is shown in

the following theorem.

Theorem 5.1: Product ciphers of PS or SP type, aligned at character byte boundaries,

provide equivalent security, in terms of greater unicity distance, to a block substitution

cipher with the same block size.

Proof: Let the number of bits in a block be represented by bm. If the block begins

at byte boundaries, then bm = m ∗ e, where m is the number of bytes in a block and e is

the number of bits in a byte. The number of symbols in the alphabet is given by |A|. For a

block of m characters, with one character per byte, the number of characters is |A|m. The

key space of a product cipher is the product of the key spaces of the individual ciphers [15].

The repetition in an arbitrary language, λ, is given by Rλ [5].

The product cipher PS is composed of a permutation of bm bits. For an S cipher of

m characters in an alphabet A, there are at most |A|m possible symbols [47]. Therefore, a

PS cipher will have a key space of

|KS| × |KP | = bm!|A|m!.

This provides an upper bound for the key space, since some combinations may be

forbidden (i.e. are never encountered in the language) such as ‘qwz’ [134]. For the PS

cipher the unicity distance, nps, is

nps ≤
log(bm!|A|m!)

Rλlog(|A|m)
,
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whereas for a substitution cipher of the same block size the unicity distance, ns, is

ns ≤
log(|A|m!)

Rλlog(|A|m)
.

Let

SR =
nps

ns

be a measure of the relative security of the two ciphers. Then

SR =
log(|A|m!) + log(bm!)

log(|A|m!)
.

Therefore,

SR = 1 +
log(bm!)

log(|A|m!)
.

Let

ε =
log(bm!)

log(|A|m!)
. (5.2)

Then

SR = 1 + ε.

The minimum number of bits in the representation of a symbol is determined by an

application of Hartley’s Equation [7]. The lower bound for bm is

bm = dlog2|A|me. (5.3)
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Substituting the minimal representation into Equation 5.4 results in

ε =
log(d(log2|A|m)e!)

log(|A|m!)
< 1

since ∀x > 1, log2(x) < x. Therefore, ε < 1 and decreases as m increases.

Expansion algorithms commonly used in encryption, such as DES [17], fill a block

with extra permuted bits derived from the input data. The mapping is bm 7→ bm′ bits,

where bm′ = bm + n. The expansion to bm′ must be unique because bm 7→ bm′ is one-to-one

and onto. The number of characters that can be represented by bm′ is 2bm′ ; therefore,

∀bm′ > 0 → bm′ < 2bm′

and

∀bm′ > 0 → log(bm′) < log(2bm′ ).

The expansion of the symbol merely maps the alphabetic character to a different symbol

representation. Therefore, there is no security advantage gained by expanding the size of

the character representation [48]. 2

Corollary 5.1: The relative security for a PSP cipher is given by S = 1 + 2ε

Proof: It can be deduced from Theorem 5.1 with the key space for a PSP cipher

given by bm!|A|m!bm! and Equation 5.4.2

Values of ε (see Equation 5.4) using ASCII encoding for small block sizes are shown

in Table 5.1 and Figure 5.7. Figure 5.8 illustrates the behavior of SR as a function of block

size. In particular, for blocks of size m > 3, the relative security SR between PS and S

ciphers is negligible.



108

5.4 PSP Security Equivalence to the S Cipher

Although the PS cipher has been shown to reduce to an S cipher, it is also necessary to

show that the additional 2ε of extra security calculated in Section 5.3 is an upper bound.

Through cipher reduction, it can be shown that there is no additional security added.

Definition 5.3: Cipher Reduction

A cipher C1 using key ki, whose encryption is denoted by Eki,C1
(M), is said to

reduce to cipher C2 for a message, M , iff ∀ki, M

∃kj |Eki,C1
(M) = Ekj ,C2

(M).

Note that each kj remains constant for a given ki.

Axiom 5.1: In order for cipher C1 to reduce to cipher C2, the range of the cipher for C1

must be a subset of the range of the encryption function for C2. That is ∀M

Eki,C1
(M) ∈ Ekj ,C2

(M).

Axiom 5.2: Any cipher C1 reduces to itself when ki = kj .

Axiom 5.3: If cipher C1 reduces to cipher C2, then cipher C1 can be replaced by cipher C2

by using an appropriate key for C2.

Theorem 5.2: A permutation encryption P reduces to a substitution encryption S within

the encoded representation of a symbol.

Proof: Let the symbol si of an alphabet A be represented by a collection of n bits

where n = dlog(A)e [7]. Let B be the set of all values represented by n bits. The values in

the set B range from 0 to 2n − 1. Therefore, A ⊆ B. A permutation [17] preserves the

number of ‘1’ and ‘0’ bits but rearranges them into another symbol. By preserving the

same number of bits, Ek(A) ∈ B. A permutation results in a mapping of A 7→ B, which is
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known to be a special case of the S cipher [17, 47]. Since a unique substitution key exists

for every permutation mapping, where A 7→ B [17], P reduces to S within the boundaries of

an encoded symbol. 2

Lemma 5.1: A substitution cipher does not necessarily reduce to a permutation cipher.

Proof: P preserves the number of ‘1’ and ‘0’ bits whereas S may or may not preserve

the number of ‘1’ and ‘0’ bits for all character mappings. 2

There are cases when a S cipher reduces to a P cipher. An example of this happens

when the symbols used in the message, M , are mapped to encrypted symbols whose

number of ‘1’ and ‘0’ bits do not change and the mapping is consistent for the bits in all

characters. This is not required by substitution since any symbol in the plaintext can map

to any symbol in the ciphertext. Therefore, not all S ciphers reduce to P ciphers.

Corollary 5.2: If cipher C1 reduces to cipher C2 it does not necessarily follow that C2

reduces to C1.

Proof: It can be seen using the preceding lemma, that P reduces to S, but S does

not necessarily reduce to P. 2

Definition 5.4: A compound symbol (meta-symbol), X, is an ordered n-tuple of

characters < x0, x1, ..., xi > regarded as comprising a single symbol (or block), where

xi ∈ Aλ and Aλ is the alphabet of language λ.

Corollary 5.3: Under the condition of symbol-byte (meta-character) boundary alignment,

a PSP cipher is idempotent to an S cipher with identical block boundaries.

Proof: Let the symbol in a block cipher be a meta-character [47] defined as being

the same size and having the same boundaries as the cipher block. Further, let the S block

cipher be applied to the same meta-character. As seen in Theorem 2, P and S ciphers are

equivalent within a symbol boundary. Therefore, a PSP cipher reduces to an SSS cipher. S

ciphers are idempotent and associative with each other [47]. Therefore, a SSS cipher

reduces to a single S cipher. 2
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Let SS be the relative security measure between block substitution ciphers of block

size m and n where m > n, defined by

SS =
nSm

nSn

.

Using substitution, it can be seen that

SS =

log(Am!)
Rλlog(Am)
log(An!)

Rλlog(An)

=
log(Am!)log(An)

log(An!)log(Am)

=
nlog(A)log(Am!)

mlog(A)log(An!)

which ultimately reduces to

SS =
n

m

log(Am!)

log(An!)
> 1.

For m > n and n ≥ 1, SS will increase as m increases. Therefore, the security of a

substitution cipher increases as the block size increases. The additional security as a

function of block size is shown in Figure 5.6. Note that the unicity distance increases

exponentially as the block size increases.

As the block size of the PSP cipher increases above two symbols, the additional

security gained is insignificant when compared to a S cipher of the same block size (see

Figure 5.8). Therefore, no additional security is gained by the use of a PSP cipher or
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product ciphers derived from it.

One tactic taken by cipher designers is to increase security by multiplying the

number of ciphers in the encryption. Designers assume that each cipher in the encryption

must be broken separately. Therefore each additional cipher in the encryption should result

in increased security through multiplying the size of the message’s key space. But the

complexity introduced in the process is ineffective because each cipher in the encryption

can ultimately be reduced to an S cipher, limiting the overall key space. Therefore,

breaking a more complicated cipher takes the same amount of effort as breaking an S

cipher of the same block size. As such, the incremental overhead in preparing and

processing an encrypted message can be avoided by only using S ciphers. Cipher reduction

and elimination of the effects of diffusion results in faster decryption. This finding is an

original contribution made by this dissertation.

m log(bm!) log(Am!) ε
1 4.605 26.6056 0.173103
2 13.3206 1621.275 0.008216
3 23.7927 66978.08 0.000355
4 35.4202 2.40 × 106 1.49 × 10−5

5 47.91165 7.89 × 107 6.07 × 10−7

6 61.09391 2.49 × 109 2.46 × 10−8

7 74.85147 7.61 × 1010 9.84 × 10−10

8 89.10342 2.27 × 1012 3.92 × 10−11

9 103.787 6.68 × 1013 1.55 × 10−12

10 118.8547 1.93 × 1015 6.14 × 10−14

Table 5.1: Security for a Block of m Bytes
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Figure 5.6: Unicity Distance for Substitution Cipher of n-Byte Blocks

5.5 Empirical Work

5.5.1 Overview

It has now been proven that PS and PSP product ciphers provide no additional security to

a cipher encryption. Reduction of product and block ciphers to an S cipher indicates that

it is possible to use the BCBB algorithm to break S, P, PS, PSP, and SPSP ciphers. The

choice of property sets for the BCBB algorithm, the composition of the algorithm, and the

results of block encrypted cipher testing are next presented.
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Figure 5.7: ε vs. Block Size (in bytes)

Figure 5.8: SR vs. Block Size (in bytes)
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5.5.2 Property Sets

When choosing property sets for use in decrypting multi byte product ciphers one

important fact was used; all ciphers ultimately reduce to an S cipher [19]. As such, the

same form of attack effective on single byte S ciphers should be effective on all types of

block ciphers. And, since S ciphers do not obscure the patterns found in language, those

patterns can still be utilized in the decryption process. Therefore, the same sets used for

decrypting the S cipher should be valid for a general attack on product ciphers. However,

data sets need to be based on meta-s-characters of the block size being decrypted. In this

case, only the meta-s-character frequency and allowed meta(s,m) sets for m = 3 and m = 4

were used for decryption tests. These sets are a subset of the property sets used in the

single byte cases described in Chapter 4.

The first property set applied to the BCBB algorithm for a product cipher is the

global frequency property set. Global redundancy is applied only once. Global frequency is

the frequency of characters in the meta-alphabet found in the message. Following the Law

of Large Numbers [15], the larger the message, the more likely the meta-s-character

frequency from the message will accurately reflect the meta-language alphabet frequency.

meta-2-character frequencies are shown in Figure 5.9. Both high and low frequency

characters are of interest in this set. A large division in the data collected can be seen

between the first 10 and subsequent members of the meta-2-character set. This division is

referred to as the “high frequency threshold.” The top ten meta-2-characters on the

frequency list were dubbed “high frequency” meta-2-characters. When interpreting data

returned from the BCBB algorithm, higher frequency meta-2-character combinations is

assumed to belong to the top ten frequency set.

Similarly, the corpus identifies a set of low frequency characters. “Low frequency”

meta-2-characters fell within the bottom 5% of the meta-2-character frequency list. Again,
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the threshold was set by finding a frequency where it is possible to distinguish between sets

of meta-2-characters. Any meta-2-character occurring more frequently than the threshold

cannot be mapped to any member inside the low frequency set. Thus the mapping(s) can

be eliminated. Together the initial application of the global frequency set resulted in a

reduction of mappings in the solution matrix.

Other property sets selected for use were the frequency of meta-s-characters and the

forbidden meta(s,m) set, with m = {3, 4}. The use of meta(s,m) sets subsumes the

redundancy and multiple letter sets used for the algorithm in Chapter 4, meaning no

additional property sets needed to be applied.
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Figure 5.9: Metacharacter Percentage for Block Size 2
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5.5.3 Algorithm Description for Decrypting Product and Block

Ciphers (BCBB)

Tests were run on texts selected for their representation of English language from the early

19th to late 20th century. Each text was encrypted using a randomly chosen key and five

different encryptions: P, S, PS, PSP, and SPSP. All tests were run on the same laptop

computer running Windows 7. Code was compiled in Visual Studio 2007. Each of the texts

tested is shown in Table 5.2 and results for each decryption is shown in Table 5.3. The

same files were decrypted employing both meta-1-character and meta-2-character

encryptions. Testing shows the difference in time required to decrypt both encryption

block sizes. Table 5.3 shows the average time required, by meta-s-character size, for

decrypting an average file. All decryption times were measured in seconds.

The algorithm, which is called the Block Cross Byte Boundary (BCBB) algorithm,

started by reading in both the encrypted text and the data sets needed for decryption. The

algorithm then set up a solution matrix of possible mappings from ciphertext to plaintext

meta-s-characters. The mapping is stored by means of a hashtable that associates invalid

key mappings for a particular ciphertext meta-s-character to a plaintext meta-s-character.

Mappings that did not appear in the hashtable were still considered possible. Lists of

meta-s-characters seen in the encrypted text and mappings found to be part of the key

were also maintained. A flowchart for the setup portion of the program that handled

preparation for decryption is found in Figure 5.10.

Once the solution structure was set up, the algorithm began to eliminate mappings.

The procedure for mapping elimination is shown in Figure 5.11. The first property set

applied was the global meta-s-character frequency data. The entire message was processed

and then compared against a normalized global frequency list. High frequency

meta-s-characters passing the threshold were mapped to a select set of plaintext characters
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File Title Author

1linc11cp.txt The Writings of Abraham Lincoln Abraham Lincoln
1onwr10cp.txt On War Carl von Clauswitz
alice30cp.txt Alice in Wonderland Lewis Carroll
1anne11cp.txt Anne of Green Gables Lucy Maud Montgomery
hoend10cp.txt Howard’s End E. M. Forser
jandc10cp.txt Jefferson and His Colleagues Allen Johnson
jmlta10cp.txt The Jew of Malta Christopher Marlowe
lglass18cp.txt Through the Looking Glass Lewis Carroll
wwill10cp.txt The Wind in the Willows Kenneth Grahame
wwrld10cp.txt The Way of the World William Congreve

Table 5.2: Two Byte Block Files Used for Testing

File S (sec) P (sec) PS (sec) PSP (sec) SPSP (sec) Mean (sec) STD (sec)

1linc11cp.txt 675 669 671 676 661 670.4 5.98331
1onwr10cp.txt 14507 14442 14682 14273 14185 14417.8 195.8997
alice30cp.txt 44617 44690 44386 44470 44473 44527 123.0203
1anne11cp.txt 778 770 773 774 775 774 2.9155
hoend10cp.txt 861 847 854 848 795 841 26.3154
jandc10cp.txt 1387 1381 1391 1388 1398 1389 6.2048
jmlta10cp.txt 12680 12723 12488 12616 12624 12626.2 88.7028
lglass18cp.txt 7851 7664 7828 7603 7716 7732.4 105.9448
wwill10cp.txt 765 743 750 744 750 750.4 8.792
wwrld10cp.txt 546 550 550 546 552 548.8 2.6832

Average 8466.6 8447.9 8437.3 8393.8 8392.9 8427.7 56.6462

Table 5.3: Two Byte Block Decryption Results
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Figure 5.10: BCBB Algorithm Setup
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Figure 5.11: BCBB Algorithm Body
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that contained the only characters seen above the threshold.

Next, the message was checked for redundant meta-s-characters in each meta(s,m)

gram for all m selected for evaluation. Redundancy in a meta(s,m) gram yields low entropy

information. Therefore, processing the redundancies further eliminated mappings.

After frequency and redundancy checks, the main body of message analysis begins.

A meta-s-character was read from the message and the meta(s,m) gram set is applied to

the portion of the message that was being analyzed. This process is iterated on by

introducing a new meta-s-character from the message and the same analysis applies until

the message is decrypted or there were no more meta-s-characters left for evaluation.

5.5.4 Improvements to the BCBB

The BCBB algorithm processes the message one meta-s-character at a time. This

algorithmic approach is not efficient because it requires maintaining a solution matrix that

grows exponentially in memory. In addition the size of the solution matrix increases in size

as the meta-s-character increases in size. Therefore, the solution is memory bound.

Another version of the BCBB algorithm, called the BCBB2 algorithm was designed

and is currently being implemented (see Figure 5.12). BCBB2 uses the same property sets

as BCBB, but it operates on keys rather than creating a solution matrix. Key mappings

are restricted to those composed of plaintext meta-s-characters found in the message. The

results of the global frequency check are used to generate keys based on the probability of

mappings. The message is decrypted using the selected key. Each resulting decrypted

meta(s,m) is checked for membership in the forbidden meta(s,m) set. If a meta(s,m) is

forbidden, the key must be incorrect. This forbidden meta(s,m) is saved as an invalid key

mapping, called a “rule.” Rules encode partial key mappings that are invalid. Any key

containing rules cannot be valid and can be removed from the solution set. All rules for a
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given key are found and recorded. Then the next key is checked. A key containing any rule

in the rule set is discarded. Keys are checked until a key generating no new rules, the

solution, is found.

BCBB2 does not create a solution matrix. Reducing the key space to the characters

seen should reduce memory requirements and speed processing. Rules will eliminate keys

without decryption by checking mappings, decreasing the amount of time spent on each

key. Processing the meta(s,m) sets should also require less computational effort.

5.5.5 BCBB Decryption Results

Every text was correctly decrypted regardless of the cipher type employed. The time

required for decryption was nearly identical for each cipher type (see Table 5.3). It should

be noted that standard deviations was small, amounting to less than 0.03% of the mean in

all cases. Variance in decryption times was most likely due to the overhead of background

tasks in the computer used to host the tests.

Variation in the time and number of characters required for decryption appears to

be dependent on several properties of the files. The properties identified were:

1. Author style;

2. File size;

3. Non-standard English, such as names, place names, and imaginary words;

4. The era in which the work was written; and,

5. The original language in which the work was written.

Authors have distinct styles of writing, including the use of same sentence structure

and lexicon in all of their works. Reusing the same patterns in structure and words results
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Figure 5.12: BCBB2 Algorithm
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in a set of m-grams trained with those patterns. As a consequence, authors that share

similar patterns of styles should decrypt in similar times and number of ciphertext

characters. For example, Alice in Wonderland and Through the Looking Glass, both by

Lewis Carroll, showed similar decryption results.

Message (file) size also factored into the efficiency of breaking the file in a particular

cipher (see Table 5.4). The smallest text file sizes in the test set was Alice in Wonderland,

Through the Looking Glass, On War, The Jew of Malta, and The Way of the World. All of

these files were less than 117 kB, while all other test files were larger than 245 kB. Shorter

messages contain less data and a lower probability of low entropy events, such as

redundancy in m-grams. Decryption results, in light of the corpus size, supports Shannon’s

contention that having more data in a message increases the probability of correct message

decryption.

Of all the files tested, Alice in Wonderland had the greatest diversity of names. It

took the longest time of all text files to decrypt. Correspondingly, Through the Looking

Glass also took longer to decrypt than other test files, due to the imaginary words and

names contained in the text. Low frequency m-grams required more search time and effort

to decrypt correctly. The Jew of Malta, a work that included a large number of foreign

names and locations also had problems with the low frequency m-grams that result from

those words. Patterns in those words, and consequently the m-grams, are not as likely to

be represented in the m-gram sets.

Corpus data was derived from the same works of English used for decrypting

meta-1-character files (see Chapter 3). During the time periods covered by the corpus,

English usage evolved, changed, and has been re-characterized. Word and usage patterns

regularly change with popularity. Changes in the lexicon and language habits can result in

literary era dependent m-gram sets, and; therefore, give rise to different decryption

performance. Customizing m-gram sets for a particular era, over which the language has
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remained relatively static, may increase future decryption accuracy and efficiency. Sets of

data derived from the same time period as the message are more likely to consist of the

same patterns of word usage and frequency as the message. Customized time period

language property sets require further research and are beyond the scope of this

dissertation.

The original language of a text is also important. Even though foreign texts are

translated into English, there are names, locations, and some words that retain the

patterns of the original language [16]. Foreign locations and names are transliterated,

producing low frequency m-grams that are mistaken as imaginary words. More low

frequency m-grams increases the number of characters, and time, required for decryption.

Foreign texts in languages closely related to English take about the same effort to decrypt

as English texts with foreign names and locations. On War, originally written in German,

decrypted in a similar amount of time as The Jew of Malta, as expected. Reducing the

effect of foreign words would require the use of additional property sets drawn from a

corpus of the original language. Future work involves adding such a corpus and then

comparing the decryption times in cases using different property set combinations. Longer

processing time for each of these works resulted from the need to evaluate a larger number

of characters due to the presence of foreign words in the texts.

As the size of the meta-s-character increases, the number of meta(s,m) grams in a

language also increases. Successful decryption using the forbidden meta(s,m) sets

necessitates having enough of the language represented in the sets to find valid language

patterns for most messages. Variations in language style and lexicon affect the set size and

membership. On the average, smaller allowed meta(s,m) gram sets are less likely to contain

all of the meta(s,m) grams found in a message. The necessary size of the sets, compared to

the meta-language, has not previously been studied and is unknown.

Definition 5.5: Meta(s,m) gram coverage
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The coverage of a meta(s,m) gram set is the percentage of meta(s,m) grams contained in a

set used to represent the patterns in a meta-language. For a particular meta(s,m) gram

size (m) and alphabet (A), the coverage of the set is given by:

Coverage =
|meta(s,m) grams set|

|A|m × 100 (5.4)

2

Higher frequency patterns are more likely to be represented in the data sets and the total

percentage of patterns represented indicates how likely the pattern is to be found.

Therefore, the chance of eliminating a correct mapping is related to the frequency of the

pattern appearing in the language.

Because there are many more meta(s,m)s as the meta-s-character size increases,

using the same corpus for allowable meta(2,m)grams presents a much smaller coverage for

larger block sizes. A corpus sufficient for meta-1-characters has less coverage for

meta-2-characters, and even less coverage for meta-3-characters. As the size of the

meta-s-character increases the size of the corpus needed to represent the language also

needs to increase in size. Since memory limitations restricted experimentation to the use of

meta(2,3) and meta(2,4) sets for meta-2-characters, only those cases were evaluated for the

multi byte tests. For meta-1-characters, the percentage of coverage from the corpus for

meta(1,3) is 64.3% and for meta(1,4) the coverage is 24%. If the same corpus is used for

the meta-2-characters, coverage is reduced to 0.597% for meta(2,3)s and 0.003% for

meta(2,4)s. An increase in the corpus size and composition is required to ensure a sufficient

number of meta-s-characters in the meta-language are represented, but the specific amount

of increase needed by the corpus requires further study.

The upper limit of the size of m for the meta(s,m)s included in the corpus is

dictated by stylometric and training constraints. If too many examples of an author’s work
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are included in the corpus, the corpus may become over-trained. Similarly, as the size of

the meta(s,m)s used as property sets (m) increases, the meta(s,m)s reflect the style of the

author used as a source in the corpus.

5.6 Advancements to the State-of-the-Art

Work in decrypting multi byte ciphers resulted in the following advances to the

state-of-the-art:

1. The concept of meta-s-characters in ciphers - Defining meta-s-characters allows a

cryptanalyst to keep diffused information in the same character. If all the information

is kept together, then diffusion is defeated and decryption becomes easier. Diffusion

across byte boundaries can be defeated using the concept of meta-s-characters.

2. Reduction of Fiestal round ciphers to an S cipher - Using the concept of

meta-s-characters, Feistel rounds can be reduced to an S cipher. Solving each

encryption in a Feistel round cipher, such as DES, might benefit from such an attack

based on block substitution.

3. A single approach can be used to solve most ciphers (based on the S cipher) - The

algorithm used in this dissertation successfully decrypted S, P, PS, PSP, and SPSP

ciphers using the same data sets. The same approach was tested on single byte and

multi byte ciphers, proving that the approach is valid for all block cipher sizes and

types.
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5.7 Chapter Summary

In this chapter the decryption of block ciphers using STE has been discussed.

Diffusion across byte boundaries (permutation) is one mixed cipher technique Shannon

suggested to increase cipher security. Making the assumption that the message is composed

of meta-s-characters the same size as the block defeats the effects of diffusion. Under the

meta-s-character assumption, all block ciphers reduce to an S block cipher and may be

decrypted using the same decryption method. This method was successfully tested on

multi byte ciphers which include all of the commonly used block cipher types used at this

time. Results showed that the performance for each type of cipher was the same,

demonstrating that the patterns in the ciphers were not disguised.

Tests conducted on a test corpus of files drawn from English literature and

translations of foreign literature into English from the end of the 19th century to the 20th

century showed the following:

1. A general algorithm exists for decrypting block and product ciphers consisting of

blocks of 1 and 2 alphabetic characters in the language. Ciphers tested included S, P,

PS, PSP, and SPSP ciphers.

2. Decryption of S, P, PS, PSP, and SPSP block ciphers with blocks consisting of 1 and

2 characters did not show significant decryption time differences for decryption.

Decryption required the same number of ciphertext characters for each type of

cipher. This indicates that language patterns were not disguised by cipher mixing.

3. File size had some effect on the amount of data required for encryption since a larger

message typically has more low entropy events that can be evaluated.

4. Patterns were not sufficiently disguised to prevent cryptanalysis by mixing P and S

constructs.
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File Title File Size (kB) Symbols Seen

1linc11cp.txt The Writings of Abraham Lincoln 350 105
1onwr10cp.txt On War 483 3464
alice30cp.txt Alice in Wonderland 106 7610
1anne11cp.txt Anne of Green Gables 483 102
hoend10cp.txt Howard’s End 459 102
jandc10cp.txt Jefferson and His Colleagues 315 139
jmlta10cp.txt The Jew of Malta 105 3524
lglass18cp.txt Through the Looking Glass 117 2061
wwill10cp.txt The Wind in the Willows 245 102
wwrld10cp.txt The Way of the World 115 102

Table 5.4: Two Byte Input meta-2-characters
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Chapter 6

Summary, Conclusions, and Future

Work

6.1 Summary

Since the first published description of Set Theoretic Estimation in 1969, it has been

applied to various problems. Up until this dissertation all STE problem applications

required their formulation in Hilbert space, a vector space with a metric function to define

distance measures. This dissertation brings information theory under the framework of

STE via the Asymptotic Equipartition Property. It is also demonstrated that the STE is a

richer method with applications in cryptography using a simpler topological space. The

reformulation of cryptanalysis within the framework of STE has allowed the decryption of

ciphers with diffusion across byte boundaries. This is the first published example of this

type of decryption. Furthermore, it is proved that all block ciphers are a form of the

substitution cipher. Consequently, the general attack algorithm presented in this

dissertation can be used against all block ciphers.

The tests run using the Block Cross Byte Boundary algorithm used m-gram,

130
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multiple letter runs, word, and sentence structure property sets. Tests conducted on the

corpus of files described in Chapter 3 showed the following results:

1. Shift cipher

All test files were successfully decrypted. An average of 5.53 ciphertext characters

were evaluated before decryption was achieved. Decryption of each test occurred in

less than 1 ms.

2. Substitution cipher

The substitution decryption algorithm decrypted 85.53% of the files correctly and

required an average of 256 characters to decrypt. Most failed decryption efforts were

attributable to forbidden m-grams contained in names, foreign words, and imaginary

words contained in the text. Decryption took approximately 50.7 seconds. Testing

results were faster than average automated decryption efforts which require

approximately 5000 characters [132].

3. Permutation cipher

The permutation decryption algorithm decrypted 99.85% of the files correctly.

Decryption of P ciphers took an average of 19.34 characters and 0.563 seconds.

4. Block ciphers

The block ciphers tested in this dissertation included: S, P, PS, PSP, and SPSP

ciphers. All of these ciphers involve permutation across byte boundaries. Under the

assumption that the use of a metascharacter with an s the same size as the block, all

the block ciphers tested were solved in the same number of characters and in a nearly

identical period of time. On the average, decryption of block ciphers took 3,462.2

characters and 8,427.7 seconds to solve. The longest decryption took 44,690

characters, with the shortest 546 characters.
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6.2 Conclusions

The research reported in this dissertation investigated the use of STE in the field of

cryptography. The study and subsequent implementation of STE in cryptography can be

summarized as follows:

1. STE can be applied in branches of information theory.

Because STE follows the AEP, as shown by the relationship of the typical set to the

solution set, information theory is a branch of STE.

2. STE can take place in non-Hilbert spaces

Most STE applications take place in Hilbert spaces. This dissertation has

demonstrated that STE can be applied in a topological space, avoiding the need for a

distance metric and simplifying complications arising from OBEs.

3. STE is useful in cryptography and cryptanalysis

STE has been used in a variety of applications prior to this research. However, until

this dissertation, STE had not been used in cryptography. Successful decryption of S,

P, PS, PSP, and SPSP ciphers of different block sizes occurred using fewer characters

than typically needed for automated decryptions. Results from this research indicate

that STE concentrates information and uses it more efficiently than other decryption

methods.

4. All block ciphers can be reduced to the S cipher

As long as information remains in the same character (or metascharacter), all ciphers

reduce to the S cipher.

5. A single decryption algorithm can be used to decrypt all block ciphers
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Results from research tests demonstrate that S, P, PS, PSP, and SPSP ciphers can be

decrypted using the same algorithm. Breaking encrypted block cipher messages into

chunks the same size as the block and treating those blocks as a single

metascharacter in a metalanguage keeps information in the same character. The

number of characters and time needed for decryption in each cipher case were the

same, indicating that patterns are not obscured by product cipher diffusion.

6. Product ciphers do not increase the security of encryption because of cipher mixing

Product ciphers increase security as the size of the block increases. Larger blocks

result in a larger key space which increases security. Some encryption algorithms

attempt to increase security by using diffusion. These efforts fail because all block

ciphers ultimately reduce to the S cipher.

7. Systematic property set development for cryptanalysis.

This dissertation presented a systematic methodology for the development of

property sets for cryptanalysis. What is particularly contributive in this methodology

is that the property sets are defined and constructed to complement one another.

The result is an overall good span of coverage of the dimensions of the information

space of cryptanalysis.

Conclusions 1 - 7 constitute original contributions to knowledge.

6.3 Future Work

During the course of this research, a number of topics have presented themselves that are

interesting, but beyond the scope of this dissertation. The most pertinent topics are listed

below:
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1. Treating author identification as a decryption problem

Stylometry indicates that an author’s writing habits lead to identifiable language

patterns. Such patterns form the basis for author specific property sets. As such, an

author may be identified using customized property sets drawn from a corpus of their

work to decrypt a target file whose author is in question;

2. Developing methods to classify words that may belong to sets of names and foreign

words.

The most common reason for failure in the decryption method was attributed to the

inclusion of names, foreign words, and imaginary words appearing in decryption files.

The addition of m-gram and word sets from dictionaries of names and/or foreign

languages would be highly desirable. The inclusion of these sets would constitute a

form of relaxation and potentially increase the number of correct decryptions using

STE algorithms and language property sets. Furthermore, such a method would also

improve the ability to attack ciphers of plaintexts that include special code words;

3. Key elimination using failed mappings.

Implement the BCBB2 algorithm and compare its performance to the BCBB

algorithm. An effective key generation algorithm is needed. Reduction of memory use

and increasing the speed of the algorithm are the primary goals for this effort; and

4. Develop and algorithm to exploit equivalent keys.

Equivalent keys reduce the keyspace of a cipher. Creating the set of equivalent keys

and using that set of keys as the keyspace may speed decryption efforts. The concept

of isomorphic neighborhoods can be used to design algorithms that can parallelize

decryption for large keyspace ciphers.
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This dissertation has demonstrated that appropriate selection of property sets used

in STE can reduce decryption time and minimize the number of characters needed for

successful decryption. While this research has answered basic questions about the use of

STE in cryptography, additional work could prove fruitful. In light of these developments,

STE should be added as a tool in cryptanalysis.
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Appendix A

Complexity Analysis

Consider the BCBB algorithm presented in Chapter 5 of this dissertation and the typical

method of breaking a Fiestel round block cipher by solving each cipher separately in the

encryption (hereafter called the Fiestel break method). In this appendix the complexity

of both algorithms is compared and it is shown that the BCBB algorithm requires less

operations than the Fiestel break algorithm for a product block cipher.

The BCBB algorithm evaluates the frequency of meta-s-characters in the message

and then evaluates the meta(s,m) grams in the file. BCBB solves a S cipher and is O(n2).

Fiestel round ciphers are an example of product ciphers with a regular internal struc-

ture that can be generalized for all block ciphers. A Fiestel round cipher can be broken into

two parts: the rounds (dr) and ciphers applied before and after the rounds in the encryption

process (di). Let D be the total number of ciphers in a product cipher such as a Fiestel

round cipher, R be the number of rounds in the block cipher, |C| be the number of ciphers

in a round, and |P | be the number of ciphers applied before and after the rounds. Ciphers

used in the encryption can be S, P, or XOR in any combination. Then the total number of

ciphers in the product cipher encryption is

152
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D = dr + di = R|C|+ |P | (A.1)

It is shown in Theorem 5.2 and Corollary 5.3 that all block ciphers are block S ciphers.

Solving for each cipher in the round requires solving only a block S cipher.

Without loss of generality, let the solution of a S block cipher be the same for all

S block ciphers and denoted by I , which represents the number of instructions required

to decrypt a message for a block cipher of size s characters. The number of instructions

required for a BCBB decryption is I , since only a single S cipher is solved. In contrast, a

Fiestel break requires D × I instructions for decryption. A Fiestel break requires D times

more instructions than the BCBB algorithm.

To illustrate the calculation of complexity difference, consider the DES cipher. The

DES cipher is a Fiestel round cipher in which there are 4 ciphers per round (|C| = 4). Sixteen

rounds (R=16) are required for the encryption, with permutations preceding and following

the rounds (|P | = 2), for a total of D = 66 ciphers. The number of ciphers required to solve

the DES cipher using the Fiestel break is D = 66 times the number of ciphers the BCBB

would break. In addition, the Fiestal break is typically solved by breaking the sequence of

applied cipher rounds in reverse order, which infers an additional decryption complexity of

O(|C|!) if Kerckhoffs assumption of full knowledge of the cipher is not followed. Notice that

Kerckhoffs assumption is never used in the BCBB algorithm. Product block ciphers that

have more ciphers in the rounds will require correspondingly more cipher decryptions and

instructions to decrypt. For any block product cipher using the Fiestel break the BCBB

algorithm requires less instructions to achieve decryption.
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