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Abstract. The security of cascade ciphers, in which by definition the keys of the 
component ciphers are independent, is considered. It is shown by a counterexample 
that the intuitive result, formally stated and proved in the literature, that a cascade 
is at least as strong as the strongest component cipher, requires the uninterestingly 
restrictive assumption that the enemy cannot exploit information about the plain- 
text statistics. It is proved, for very general notions of breaking a cipher and of 
problem difficulty, that a cascade is at least as difficult to break as the first 
component cipher. A consequence of this result is that if the ciphers commute, then 
a cascade is at least as difficult to break as the most-difficult-to-break component 
cipher, i.e., the intuition that a cryptographic chain is at least as strong as its 
strongest link is then provably correct. It is noted that additive stream ciphers do 
commute, and this fact is used to suggest a strategy for designing secure practical 
ciphers. Other applications in cryptology are given of the arguments used to prove 
the cascade cipher result. 
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1. Introduction 

A n  i m p o r t a n t  g e n e r a l  q u e s t i o n  in c r y p t o g r a p h y ,  w h i c h  has,  for  ins tance ,  b e e n  

a d d r e s s e d  (bu t  n o t  a n s w e r e d )  by Diff ie  a n d  H e l l m a n  [2, p. 83] a n d  M e r k l e  a n d  

H e l l m a n  [5] ,  is w h e t h e r  m u l t i p l e  e n c r y p t i o n  wi th  a c e r t a i n  c i p h e r  i nc reases  its 

c r y p t o g r a p h i c  secur i ty .  I n  this  p a p e r  we  c o n s i d e r  the  m o r e  g e n e r a l  q u e s t i o n  o f  t he  

* The results of this paper were presented in part at the 1990 IEEE Symposium on Information Theory, 
January 14-19, 1990, San Diego, California. 
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X = Xt , ~ Y  

(a) (b) 

Fig. 1. A cascade of two ciphers (a) and a product cipher consisting of two ciphers (b). The secret keys 
within a cascade cipher are statistically independent but the subkeys of a product cipher need not be 
independent. 

security of cascade ciphers where the component ciphers can be distinct. Can, for 
example, DES be weakened by cascading it with another cipher? 

Obviously, if a binary data sequence is encrypted twice with the same binary 
additive stream cipher and if the key happened to be the same for both encryptions, 
then the resulting ciphertext is equal to the plaintext and thus the system is 
completely insecure. Such considerations have caused some cryptographers to 
worry about the security of multiple encryption. 

The distinction between cascade ciphers and product ciphers [.6] is that in the 
latter the keys of the component ciphers need not be statistically independent, 
whereas they are in the former. This difference is illustrated in Fig. 1. Note that the 
above stream-cipher example illustrates the impossibility of proving a general result 
about the security of product ciphers. 

We consider the two most popular types of ciphers, block ciphers and additive 
stream ciphers, but the results can easily be generalized for arbitrary ciphers with 
compatible input and output alphabets. Throughout this paper we consider the 
difficulty of a problem to be its intrinsic difficulty as opposed to the (often considered) 
historical difficulty, which is defined as the difficulty when the optimum known 
algorithm is used. For a given model of computation, the intrinsic difficulty of a 
problem is constant (though usually unknown), but the historical difficulty may 
decrease as new algorithms are discovered. 

It seems to be intuitively clear, and in fact the design of some practical ciphers 
has been motivated by this idea, that if one of the ciphers in a cascade is strong, 
then the whole cascade is strong. On the other hand, it seems to be at least 
conceivable that a cipher can be weakened by cascading it with some malignant 
cipher especially designed for this purpose. The following theorem for block ciphers, 
which was proved by Even and Goldreich [.3], is therefore nontrivial. However, we 
shall see that it holds only under the uninterestingly restrictive assumption, which 
is not explicitly stated in [3], that the enemy cannot exploit information about the 
plaintext statistics. The history of cryptology shows that most successful attacks on 
ciphers have succeeded precisely because they exploited knowledge of the plaintext 
statistics. 
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For emphasis, we repeat here our standing assumption that the keys of the 
component ciphers in a cascade are selected statistically independently. 

Folk Theorem. A cascade of ciphers is at least as difficult to break as any of its 
component ciphers. 

The following plausibility argument can be used for "proving" this theorem. It 
suffices to prove the theorem for a cascade of two ciphers as the general case then 
follows by a simple induction. Assume there exists an efficient algorithm, Algorithm 
A, that breaks the cascade of ciphers C1 and Cz (see Fig. 1 (a)), i.e., that determines the 
plaintext X corresponding to a given cryptogram Y of the cascade cipher, when 
some pairs of corresponding plaintext and ciphertext blocks (for the same key) are 
given. (This corresponds to a so-called known-plaintext attack, but the arguments 
below are easily modified for a chosen-plaintext or a chosen-ciphertext attack.) It 
remains to show that Algorithm A can be used to break both component ciphers, 
i.e., to determine the plaintext for a given cryptogram for either one of these ciphers 
when some plaintext/cryptogram pairs for this cipher are given. Suppose now that 
the second component cipher C2 is to be attacked. Given the cryptogram Yz and 
some plaintext/ciphertext pairs for C2, we can attack C2 by considering it to be 
embedded in a cascade in which we ourselves choose the key of the first cipher Cx 
in the cascade. Because we know the key for cipher C1 in this artificial cascade, we 
can convert each known plaintext/ciphertext pair for C2 to a plaintext/ciphertext 
pair for the cascade simply by decrypting the given plaintext considered as a 
ciphertext for C1. Here, we make the reasonable assumption that the difficulty of 
encrypting or decrypting for a component cipher with known key is negligible 
compared with the difficulty of breaking that'cipher. Now we apply Algorithm A 
to the artificial cascade and thus determine the plaintext X corresponding to the 
ciphertext Y = Y2 of the cascade. Finally, we encrypt X with cipher C1 to obtain 
the desired plaintext X2 of the cipher C2 under attack. An entirely parallel argument 
shows that Algorithm A can also be used to break the first component cipher Cz 
with essentially the same amount of computation as required for Algorithm A to 
break the cascade. 

Essentially the same argument as above applies if "breaking the cipher" means 
determining the key. When the breaking algorithm applied to the artificial cascade 
yields the keys of the two component ciphers, we simply accept the key of the 
component cipher actually under attack. 

It is important to note that the above plausibility argument, which is essentially 
the proof used by Even and Goldreich [3-1, is valid only for "pure" known-plaintext, 
chosen-plaintext, or chosen-ciphertext attacks in which the enemy cannot make use 
of information about the statistics of the plaintext to be found. It is therefore not even 
valid for a ciphertext-only attack in which only information about the plaintext 
statistics is exploited. 

To see that the plaintext statistics are crucial, consider the following counter- 
example to the above "folk theorem." Consider two block ciphers, C1 and C2, which 
both have input and output alphabet {A, B, C, D} and key space {0, 1} with 0 and 
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1 being equiprobable. The block size is one digit, and the key is used one time. For 
keys 0 and 1, cipher C1 transforms (A, B, C, D) into (C, D, A, B) and (C, D, B, A), 
respectively, and cipher C2 transforms (A, B, C, D) into (C, D, A, B) and (O, C, A, B), 
respectively. Assume that the plaintext source statistics are such that it emits only 
A or B with nonzero probability. Then C1 is completely insecure for this source, 
but C2 is perfectly secure since the plaintext and ciphertext are statistically indepen- 
dent. However, the cascade with C~ preceding C2 is completely insecure because A 
and B are transformed into C and D, respectively, by C~, then back into an A and 
B, respectively, by C2. Hence the cascade cipher, which for a source emitting only 
A's and B's is equivalent to the identity transformation, is much weaker than its 
component cipher C 2, which contradicts the folk theorem. 

2. Security of Cascade Ciphers 

In the following we make the usual assumption that the enemy knows precisely the 
cipher system, including the probability distribution of the key, but that he has no 
other direct a priori information about the key. We further allow that the enemy's 
knowledge, in addition to complete knowledge of the ciphertext, is a subset of the 
following: 

(1) Complete or partial knowledge of the plaintext statistics. 
(2) For block ciphers: (a) the corresponding ciphertext blocks for some chosen 

and/or known plaintext blocks and/or (b) some information about the plain- 
text blocks corresponding to some chosen ciphertext blocks for the same key. 

(3) For additive stream ciphers, (possibly partial) knowledge of some portion of 
the keystream. 

It should be noted that assumption (2) for block ciphers is not completely general 
since it specifies that ciphertext must be available in entire encipherable/decipherable 
units, i.e., as complete blocks. Additive stream ciphers, for which known-plaintext, 
chosen-plaintext, and chosen-ciphertext attacks are all equivalent to knowledge of 
a portion of the keystream, do not require a similar restriction of generality. The 
following proposition holds for any attack covered by the above general assump- 
tion, and for virtually any reasonable definition of breaking a cipher. 

Proposition. A cascade of n ciphers is at least as difficult to break as the first cipher 
in the cascade (under the reasonable assumption that the difficulty of carrying out k 
encryption or decryption operations is negligible compared with the difficulty of 
breaking the cascade, where k is the number of plaintext or ciphertext units used in 
the attack). 

Proof. Assume an oracle who gives upon request and free of cost the keys of all 
component ciphers in the cascade except the key of the first component cipher. 
Breaking the cascade with the oracle's help cannot be more difficult than breaking 
it without this help because the oracle's information can always be disregarded. 
However, breaking the cascade with the oracle's help is equivalent to breaking the 
first cipher with the oracle's help because every cryptogram of the cascade can with 
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assumed negligible computation be converted into the corresponding cryptogram 
for the first cipher and vice versa and because the plaintexts of the first cipher and 
the cascade are the same. However, breaking only the first cipher with the oracle's 
help is equivalent to breaking this first cipher without the oracle's help. This follows 
from the fact that the information provided by the oracle is statistically independent 
of the first key. In other words, it follows from the fact that if the cryptanalyst 
attacking the first cipher wishes to embed that cipher in an artificial cascade in 
which he himself chooses the second and all subsequent keys (that by our standing 
assumption for a cascade are independent of the first key) so as to avail himself of 
the oracle's aid, then he already possesses all the information that the oracle can 
provide. It follows that breaking the first cipher in the cascade cannot be more 
difficult than breaking the cascade cipher itself. [] 

Remark. It should be noted that the proof of [3] for the Folk Theorem, which was 
in the previous section argued to hold only under strong restrictions, is a valid 
alternative proof for the above proposition. 

When the component ciphers in a cascade commute, i.e., when the enciphering 
transformation of the cascade is independent of the order of the component ciphers, 
then every cipher can be considered as being first. 

Corollary 1. A cascade of commuting ciphers is at least as difficult to break as the 
most-difficult-to-break component cipher. 

We remark that additive stream ciphers, i.e., ciphers in which a key-dependent 
"keystream" sequence is added bit-by-bit modulo 2 to the plaintext sequence, do 
commute. With respect to provable security of cascade ciphers, additive stream 
ciphers seem to be superior to block ciphers for two reasons: first, because they 
commute and thus Corollary l applies, and, second, because the smallest en- 
cipherable/decipherable unit is a single bit rather than a block of bits, and there- 
fore our assumption (needed for provable sccurity) that ciphertext must be available 
in an attack as complete transformable units entails no loss of generality. 

Corollary 2. The bitwise modulo 2 sum of n keystream sequences that are generated 
by devices with independent keys is at least as difficult to predict as the most-difficult- 
to-predict keystream sequence. 

An analogous corollary could be formulated for the difficulty of distinguishing a 
pseudorandom generator with random seed from a binary symmetric source, a 
notion of security introduced by Yao [7] within a complexity-theoretic framework, 
or for any other reasonable notion of stream-cipher security. 

3. Applications and Conclusions 

Corollary 2 has implications for the practical design of additive stream ciphers. 
Since none of the known design methods for stream ciphers (or any other cipher 
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for that matter} yields provably secure ciphers, it seems to be advisable to cascade 
a small set of keystream generators, each relying on a different design principle, 
rather than to employ one large keystream generator relying on only a single design 
principle. The cascade cipher can fail only if all applied design principles happen to 
fail simultaneously. For example, a cipher might be devised that could possibly be 
insecure only if factoring, the discrete logarithm, and other conjectured hard prob- 
lems were all easy to solve. The cascade approach to founding cryptographic 
security on different conjectured hard problems seems to be safer than approaches 
such as the elegant schemes of [4] and I-1 ] for proving that a specific key-distribution 
protocol and a specific interactive-identification scheme, respectively, are at least 
as secure as the factoring and the discrete logarithm problems are difficult. Natu- 
rally, in the cascade approach to stream-cipher design, the total cost and key size 
available must be divided among the component ciphers and the key size of every 
component cipher must be large enough (e.g., 100 bits) to make an exhaustive search 
over the key space infeasible. Note that although it can be proved "only" that a 
cryptographic stream-cipher chain is always at least as strong as the strongest link, 
it can be reasonably conjectured that the cascade is usually much stronger. Such a 
conjecture is comparable with other conjectures on which the security of practical 
ciphers relies. 

Another implication of Corollary 2 is on the unsolved problem of finding prov- 
ably (as opposed to conjectured) computationally secure ciphers. 

Corollary 3. A cascade of additive binary stream ciphers, known to contain at least 
one computationally secure cipher, is computationally secure. 

Note that Corollary 3 does not require that it be known which of the compo- 
nent ciphers is the computationally secure one. This suggests the new problem of 
proving that some set of ciphers must contain at least one computationally secure 
cipher. 

The arguments used above to prove the cascade cipher result have other applica- 
tions in cryptology. Consider the security of RSA public exponents. Is e = 3 or 
e = 15 more secure? It can be argued that an exponent e is at least as secure as any of 
its divisors (e.g., e = 15 is at least as secure as e = 3 or e = 5), since any algorithm 
extracting eth roots modulo m, where e = te', can be used for extracting e'th roots 
by raising the input number to the power t. However, two remarks are in order. 
First, this argument applies only if the modulus is selected randomly from a large 
set of moduli, since, for any fixed modulus, there exists a fast (but possibly unknown) 
algorithm for extracting eth roots. Second, as in the case with secret-key block 
ciphers, this argument is valid only under the assumption that ciphertext is available 
as entire blocks. 

Consider the security ofa pseudorandom number generator (with a random seed) 
against being distinguished from a binary symmetric source (BSS), i.e., a device 
whose output is a true coin-tossing sequence. Applying an invertible and non- 
expanding transformation to the generator's output cannot decrease, but can possi- 
bly strongly increase, its security against such a distinguishability attack. A statisti- 
cal test distinguishing the modified generator from a BSS can easily be converted 
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into a statistical test distinguishing the original generator from a BSS with the same 
probability of success if we assume that the difficulty of making the transformation 
is negligible compared with the difficulty of the distinguishability attack on the 
pseudorandom number generator itself. Notice that we require the invertible trans- 
formation to be easily computable only in the forward direction. A (conjectured) 
one-way function (e.g., exponentiation modulo a prime) can thus be applied for 
increasing a generator's security without any risk of introducing a trapdoor for the 
enemy. 

The reason for presenting this paper in a fairly informal manner is not that the 
results would not hold if all definitions were to be formalized precisely, but rather 
that the results hold for every reasonable formalism. For example, the difficulty of 
a problem could be measured as the average (over all instances of the problem) time 
required to solve it by the optimal program on a certain specific computer, and 
breaking an additive stream cipher could be defined as predicting the next bit, with 
probability 1/2 + e of success for some given positive e, when given a certain por- 
tion of the keystream, or as distinguishing the keystream generator from a binary 
symmetric source with a certain probability of success. 
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